Theoretical study of laser-cooled SH anion

Author:

Wan Ming-Jie,Li Song,Jin Cheng-Guo,Luo Hua-Feng, , ,

Abstract

The potential energy curves, dipole moments, and transition dipole moments for the <inline-formula><tex-math id="M13">\begin{document}${{\rm{X}}^1}{\Sigma ^ + }$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M13.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M13.png"/></alternatives></inline-formula>, <inline-formula><tex-math id="M14">\begin{document}${{\rm{a}}^3}\Pi $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M14.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M14.png"/></alternatives></inline-formula>, and <inline-formula><tex-math id="M15">\begin{document}${{\rm{A}}^1}\Pi $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M15.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M15.png"/></alternatives></inline-formula> electronic state of sulfur hydride anion (SH<sup>–</sup>) are calculated by using the multi-reference configuration interaction method plus Davidson corrections (MRCI+<i>Q</i>) with all-electron basis set. The scalar relativistic corrections and core-valence correlations are also considered. In the CASSCF calculations, H(1s) and S(3s3p4s) shells are chosen as active space, and the rest orbitals S(1s2s2p) as closed-shell. In the MRCI+<i>Q</i> calculations, the S(1s2s2p) shells are used for the core-valence correlation. Spectroscopic parameters, Einstein spontaneous emission coefficient, Franck-Condon factors, and spontaneous radiative lifetimes are obtained by using Le Roy’s LEVEL8.0 program. The calculated spectroscopic parameters are in good agreement with available experimental data and theoretical values. Spin-orbit coupling (SOC) effects are evaluated with Breit-Pauli operators at the MRCI+<i>Q</i> level. Transition dipole moments (TDMs) for the <inline-formula><tex-math id="M16">\begin{document}${{\rm{A}}^1}{\Pi _1} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M16.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M16.png"/></alternatives></inline-formula>, <inline-formula><tex-math id="M17">\begin{document}${{\rm{a}}^3}{\Pi _{{0^ + }}} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M17.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M17.png"/></alternatives></inline-formula>, <inline-formula><tex-math id="M18">\begin{document}${{\rm{a}}^3}{\Pi _1} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M18.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M18.png"/></alternatives></inline-formula>, <inline-formula><tex-math id="M19">\begin{document}${{\rm{A}}^1}{\Pi _1} \leftrightarrow {{\rm{a}}^3}{\Pi _{{0^ + }}}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M19.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M19.png"/></alternatives></inline-formula> and <inline-formula><tex-math id="M20">\begin{document}${{\rm{A}}^1}{\Pi _1} \leftrightarrow {{\rm{a}}^3}{\Pi _1}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M20.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M20.png"/></alternatives></inline-formula> transitions are also calculated. The strength for the <inline-formula><tex-math id="Z-20190315031218-1">\begin{document}${{\rm{A}}^1}{\Pi _1} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_Z-20190315031218-1.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_Z-20190315031218-1.png"/></alternatives></inline-formula> is the strongest in these five transitions, the value of TDM at <i>R</i><sub>e</sub> is –1.3636 D. We find that the value of TDM for the <inline-formula><tex-math id="M21">\begin{document}${{\rm{a}}^3}{\Pi _1} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M21.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M21.png"/></alternatives></inline-formula> transition at <i>R</i><sub>e</sub> is 0.5269 D. Therefore, this transition must be taken into account to build the scheme of laser-cooled SH<sup>–</sup> anion. Highly diagonally distributed Franck-Condon factor <i>f</i><sub>00</sub> for the <inline-formula><tex-math id="M22">\begin{document}${{\rm{a}}^3}{\Pi _1}(\nu ' = 0) \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M22.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M22.png"/></alternatives></inline-formula> <inline-formula><tex-math id="M22-1">\begin{document}$ (\nu '' = 0)$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M22-1.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M22-1.png"/></alternatives></inline-formula> transition is 0.9990 and the value for the <inline-formula><tex-math id="M23">\begin{document}${{\rm{A}}^1}{\Pi _1}(\nu ' = 0) \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + (\nu '' = 0)$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M23.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M23.png"/></alternatives></inline-formula> transition is 0.9999. Spontaneous radiative lifetimes of <inline-formula><tex-math id="M24">\begin{document}$\tau \left( {{{\rm{a}}^3}{\Pi _1}} \right)= 1.472 \;{\text{μ}}{\rm{s}}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M24.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M24.png"/></alternatives></inline-formula> and <inline-formula><tex-math id="M25">\begin{document}$\tau \left( {{{\rm{A}}^1}{\Pi _1}} \right)=0.188 \;{\text{μ}}{\rm{s}}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M25.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M25.png"/></alternatives></inline-formula> are obtained, which can ensure that laser cools SH<sup>–</sup> anion rapidly. To drive the <inline-formula><tex-math id="M26">\begin{document}${{\rm{a}}^3}{\Pi _1} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M26.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M26.png"/></alternatives></inline-formula> and <inline-formula><tex-math id="M27">\begin{document}${{\rm{A}}^1}{\Pi _1} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M27.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M27.png"/></alternatives></inline-formula> transitions, just one laser wavelength is required. The wavelengths are 492.27 nm and 478.57 nm for two transitions, respectively. Notably, the influences of the intervening states <inline-formula><tex-math id="M28">\begin{document}${{\rm{a}}^3}{\Pi _1}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M28.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M28.png"/></alternatives></inline-formula> and <inline-formula><tex-math id="M29">\begin{document}${{\rm{a}}^3}{\Pi _{{0^{\rm{ + }}}}}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M29.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M29.png"/></alternatives></inline-formula> on the <inline-formula><tex-math id="M30">\begin{document}${{\rm{A}}^1}{\Pi _1} \leftrightarrow {X^1}\Sigma _{{0^ + }}^ + $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M30.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M30.png"/></alternatives></inline-formula> transition are small enough to implement a laser cooling project. A spin-forbidden transition and a three-electronic-level transition optical scheme of laser-cooled SH<sup>–</sup> anion are constructed, respectively. In addition, the Doppler temperatures and recoil temperatures for the <inline-formula><tex-math id="M31">\begin{document}${{\rm{a}}^3}{\Pi _1} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M31.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M31.png"/></alternatives></inline-formula> and <inline-formula><tex-math id="M32">\begin{document}${{\rm{A}}^1}{\Pi _1} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M32.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M32.png"/></alternatives></inline-formula> transitions of laser-cooled SH<sup>–</sup> anion are also obtained, respectively.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3