Influence of momentum ratio and its throttling method on spray characteristics of pintle injector

Author:

Chen Hui-Yuan,Li Qing-Lian,Cheng Peng,Lin Wen-Hao,Li Chen-Yang, ,

Abstract

The spray characteristics of a liquid-liquid pintle injector under different momentum ratios are investigated experimentally in this paper. Water is used as a simulant medium for both the fuel and the oxidizer. By increasing the mass flow rate of the oxidizer or reducing the mass flow rate of the fuel, the local momentum ratio is increased from 0.16 to 0.99, wherein the responding total momentum obtained by the former throttling method is relatively high due to the higher mass flow rate of the fluid. The outer and inner spray boundary, droplet size distribution and the velocity field are studied by high-speed camera and phase Doppler anemometry (PDA). It is indicated that the spray pattern is affected by the operating conditions directly. The spray pattern is divided into the solid cone and the hollow-solid cone, generally. Furthermore, the spray pattern influences the other spray characteristics. Under the same local momentum ratio with different throttling methods, the spray angle is almost consistent, while the spray boundary in the far field is wider under the higher total momentum. With the increase of the mass flow rate of the outer injector, a hollow structure is generated in the near field of the spray, and its range expands with the increase of the local momentum ratio. The value of SMD increases with the local momentum ratio increasing. Under the same local momentum ratio, the variation range of SMD is wider under the higher total momentum. The variation trend of SMD in the radial direction differs from the spray pattern, too. The SMD of the hollow-solid spray displays as an " N” shape along the radial direction, and reaches its peak at the outer boundary. By contrast, the SMD of the solid spray decreases slightly in the radial direction and varies on a small scale. The value of the resultant velocity is determined by the total momentum, and the curves of all the resultant/axial/radial velocity display as an inverted " V” in the radial direction. Nevertheless, the trend of axial velocity in the radial direction is mainly decreasing, and the increasing stage only exists at the central spray. However, the radial velocity undergoes a slight decrease or levels off directly after reaching the peak. The higher the local momentum ratio, the larger the radial velocity is, while the lower the axial velocity. In addition, the velocity field below the hollow field is dominated by the liquid film, which is explained by analyzing the impinging process of the neighboring cloaks in this paper.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference37 articles.

1. Dressler G A, Bauer J M 2000 36th AIAA/ASME/SAE/ ASEE Joint Propulsion Conference and Exhibit Huntsville, Alabama, July 16–19, 2000 pp2000–3871

2. Heister S D 2011 Handbook of Atomization and Sprays: Theory and Applications (New York: Springer Science + Business Media) pp647–655

3. Yue C G, Li J X, Feng X P, Tang J L 2008 World Sci-Tech R&D 30 609
岳春国, 李进贤, 冯喜平, 唐金兰 2008 世界科技研究与发展 30 609

4. Dressler G A 2006 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Sacramento, California, July 9–12, 2006 pp2006–5220

5. Lei J P, Lan X H, Zhang R J, Chen W 2014 Sci. Sin.: Tech. 44 569
雷娟萍, 兰晓辉, 章荣军, 陈炜 2014 中国科学: 技术科学 44 569

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3