Research progress of coherent control of terahertz spin waves and strong coupling in rare-earth orthoferrites

Author:

Jin Zuan-Ming,Ruan Shun-Yi,Li Ju-Geng,Lin Xian,Ren Wei,Cao Shi-Xun,Ma Guo-Hong,Yao Jian-Quan, ,

Abstract

Antiferromagnets (AFM) are promising for future spintronic applications due to their advantageous properties. Antiferromagnets produce no stray fields and are insensitive to external magnetic field perturbations. Furthermore, antiferromagnets show intrinsic high terahertz (THz) frequency dynamics. The THz pulses are a direct and general probe of ultrafast spin dynamics in insulating antiferromagnets. In this review article, we discuss the excitation and control of the antiferromagnetic spin resonances in rare-earth orthoferrites (<i>R</i>FeO<sub>3</sub>, <i>R</i> indicates Y and rare-earth element) with the THz electromagnetic pulsetime-domain spectroscopy. We believe that this approach is general and can be applied to a broad range of materials with different AFM spin alignments, giving a novel non-contact approach to probing AFM order with ps temporal resolution. We summarize different quasi-ferromagnetic modes (qFM) and quasi-antiferromagnetic modes (qAFM), as well as the spin reorientation transition temperatures of <i>R</i>FeO<sub>3</sub>. Coherent control of spin waves at THz frequency promises fruitful applications in ultrafast magnetization control and has received increasing attention. It is demonstrated that not only the delay time between the excitation and control THz pulses arriving DyFeO<sub>3</sub>, but also the intrinsic dielectric anisotropy of YFeO<sub>3</sub> in the THz range allow the coherent control of both the amplitude and the phase of the excited spin waves. Moreover, we outline the current observation of Dicke cooperativity in magnetic interaction of Er<i><sub>x</sub></i>Y<sub>1-</sub><i><sub>x</sub></i>FeO<sub>3</sub>, which presents a route to understanding, controlling, and predicting novel phases of condensed matter by using the concepts and tools available in quantum optics. Finally, magnon-polaritonsare demonstrated to play a key role in preparing the THz waves through TmFeO<sub>3</sub>.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3