Effect of alkane chain length on tribological properties of straight chain alkane liquid film

Author:

Zhang Zhao-Hui,Yu Xiao-Dong,Li Hai-Peng,Han Kui, ,

Abstract

How to overcome the friction between the micro components has become a key point of the successful operation of the micro/nano-electric mechanical systems. The understanding of the friction mechanism of the alkane liquid film confined between two substrates is important when the friction law on a macro/nano scale is not applicable. In this work, the molecular dynamics simulations are used to study the effect of the chain length on the friction properties of the liquid films that are confined between two golden substrates. There are seven pure alkane liquid films that are composed of one molecule C<sub><i>n</i></sub>H<sub>2<i>n</i> + 2</sub>(<i>n</i> = 6, 8, 10, 12, 14, 16, 18), and six mixed alkane liquid films that are composed of two molecules C<sub>6</sub>H<sub>14</sub>/C<sub><i>n</i></sub>H<sub>2<i>n</i> + 2</sub>(<i>n</i> = 8, 10, 12, 14, 16, 18) with a ratio of 1∶1. The results show that the friction force and the coefficient of friction of pure alkane liquid films both increase as the chain length increases when the carbon atom number is less than 12, whereas the friction property keeps stable when the carbon atom number of the alkane molecule is greater than 10 and the pure hexadecane liquid film has the largest friction force. In the mixed films, the addition of short chain alkane molecules can strengthen the friction, and the hexane/dodecane mixed film has the maximum friction force. The short chain molecule dilutes the C<sub>8</sub>H<sub>18</sub> film and C<sub>10</sub>H<sub>22</sub> film which cause the friction force to decrease. During the sliding progress, the formation of solid-like high density-packet layers is the main reason for the friction reduction. When no solid-like layer or just one solid-like layer is formed at the interface of golden base, the liquid alkane film is liquid-like and its viscosity becomes much larger than that in the normal state, which leads to high friction force. The short chain molecules reduce the density of the solid-like layers, which causes the film to transform from solid-like state to liquid state, thus resulting in the increase of friction. The friction property mainly depends on the layered structure, and the interaction between the golden surface and liquid film contributes to the friction. This study helps to understand the friction mechanism of ultra-thin liquid films.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3