Effect of concentration-dependent diffusion coefficient on dendrite growth in directional solidification

Author:

Chu Shuo,Guo Chun-Wen,Wang Zhi-Jun,Li Jun-Jie,Wang Jin-Cheng, , ,

Abstract

Solute diffusion is an important process that determines the dendrite growth during solidification. The theoretical model generally simplifies the solute diffusion coefficient in liquid phase into a constant. Nevertheless, the composition of the boundary layer changes greatly in the solidification process, the diffusion coefficient will no longer be a constant and is dependent on concentration. In this paper, the quantitative phase field model is used to simulate the effect of concentration-dependent diffusion coefficient on dendrite growth in directional solidification. In the model, the concentration-dependent diffusion process is investigated by coupling the concentration-dependent diffusion coefficient in the liquid solute diffusion equation. A series of simulation results confirms that the concentration-dependent diffusion process has a significant effect on the dendrite growth. The results show that the increase of the coupling intensity of solute concentration will enhance the diffusion of solute in the mushy zone between primary dendrites to the dendrite tip, resulting in the increase of solute enrichment at the dendrite tip, thereby increasing the tip undercooling. The variation of diffusion coefficient in liquid phase has little effect on the tip radius of dendrite, and the simulation results are in good agreement with those from the theoretical model. Moreover, the amplitude of dendritic side branches decreases with the increase of solute diffusion coefficient. In the study of dendrite arrays, it is found that the concentration-dependent diffusion coefficient increases the primary spacing and reduce the tip position. The results of this study indicate that for a system with a concentration-dependent coefficient significantly, the effect of concentration-dependent diffusion on tip undercooling and side branches should be considered in the quantitative and experimental verification of the existing model.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3