Multi-section images parallel encryption based on optical scanning holographic cryptography technology

Author:

Wang Ren-De,Zhang Ya-Ping,Zhu Xu-Feng,Wang Fan,Li Chong-Guang,Zhang Yong-An,Xu Wei,

Abstract

In this paper, the function of parallel encrypting multiple images and reproducing arbitrary layers of images is realized by improving the double pupil function in optical scanning holography. In an optical scanning holography (OSH) system, a dual-pupil heterodyne incoherent image processing technique is used to record holographic images. By adjusting the two pupil functions in the optical system, the interference fringes can be modified to achieve different imaging effects. In this paper, the ring pupil and random phase plate are used to act as two pupil functions to interfere to form a ring random phase plate, and thus realizing the fast scanning of multi-layer images. Then the multi-layer images can be quickly encrypted by one imaging technique. The scanned signals are quickly collected by photoelectric detectors, and they synthesize encrypted holograms by computer. By using the digital holography to decrypt the holograms, the precise reproduction of any layer image can be achieved. The OSH system with random phase pupil is strongly dependent on the longitudinal position of the system in digital reconstruction. The defocusing noise can be converted into random noise and the effect of defocusing layer on imaging can be effectively suppressed. However, in practice, it is necessary to average multiple images to achieve better imaging effect, and the accuracy of random phase plate is required. In this paper, most of the random noise can be filtered with the aid of ring pupil, and all the information about multi-layer graphics can be recorded and reconstructed by one scan. In the process of reconstruction, the influence of defocusing image can be effectively eliminated, and the decryption of any layer image can be realized. This method collects encrypted image by photoelectric detector, and does not need complex algorithm reconstruction nor phase iteration, which greatly reduces the time expended in the encryption process. In the process of encryption, the key space of the system is increased, and the encrypted image obtained has high security. In this paper, correlation coefficient is used to evaluate the encryption effect of this method, and the effectiveness and security of this method are verified by simulation experiments. For cutting resistance, when 75% of the information is lost, the correlation coefficient can still reach more than 0.5. For the sensitivity of information, the integrity of decrypted image will be seriously damaged when the wavelength and distance shift very little. For the anti-noise ability, under the influence of Gauss noise and salt and pepper noise, the correlation coefficient and image recognition degree are high. This method is very time-saving, and the result of encryption has high security, high sensitivity, strong ability to resist clipping and noise.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Layer-mesh-based holograms for fast generation and high-quality reconstruction;Optics and Lasers in Engineering;2024-04

2. Three-dimensional spatial orbital angular momentum holography;Acta Physica Sinica;2024

3. Multi-image Multiplexing Pixel Synchronization Encryption based on Optical Scanning Holography;Proceedings of the 8th International Conference on Cyber Security and Information Engineering;2023-09-22

4. Optical tomography in coherent off-axis scanning holography;Holography, Diffractive Optics, and Applications XII;2022-12-19

5. Invertible encryption network for optical image cryptosystem;Optics and Lasers in Engineering;2022-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3