Quasinormal mode analysis of extremely localized optical field in body-of-revolution plasmonic structures

Author:

Zhou Qiang,Lin Shu-Pei,Zhang Pu,Chen Xue-Wen,

Abstract

Surface plasmons in metallic nanostructures can confine the optical field within the region of subwavelength, even nanometer scale, and thus enhance the light-matter interaction and other physical processes, which will lead the plasmon optics to possess attractive applications in many areas. However, the " mode volume” often used to characterize field confinement in plasmonic structures is only defined phe-nomenologically and suffers ambiguity when applied to complex structures. In this work, we develop a theoretical method to characterize the field confinement based on quasi-normal mode analysis. We recognize the fact that a plasmonic resonance may result from many eigen-modes, which together contribute to the observed field confinement. An effective mode volume is introduced for quasi-normal modes and used to characterize the field confinement when the plasmonic resonance is dominated by a single quasi-normal mode. Two typical kinds of plasmonic structures are systematically examined, and the field confinement on the order of 10 nm<sup>3</sup>–100 nm<sup>3</sup> is confirmed. In pursuit of the ultimate field confinement, we revisit the so-called " pico-cavity” formed by an atomistic protrusion in the nano gap of the particle-on-mirror configuration. The apparent hot spot is shown to have contributions from several quasi-normal modes. The dominant one exhibits a further squeezed mode volume compared with the scenario without the protrusion, but is still well above 10 nm<sup>3</sup>.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3