First-principles calculations of solute-segreagtion of W-In alloys at grain boundaries

Author:

Wang Qi,Tang Fa-Wei,Hou Chao,Lü Hao,Song Xiao-Yan,

Abstract

In a tungsten-based alloy system, the appropriate solute elements are selected to produce strong segregation effect to reduce the interfacial formation energy, which can effectively improve the mechanical property and thermal stability of the system. Based on the first principles calculation, the solute segregation model of tungsten-based alloys is constructed. The W-In alloy is taken for example to study the grain boundary segregation behavior and bonding characteristics of solute at different concentrations. The bonding of the W-In system is revealed from the electronic structure, and the variation of the interface stability of the W-In system with the solute concentration is predicted. Based on the electronic structure analysis of bond population, differential charge density and density of states, the bond transition characteristics of solute atoms in the W-In system in the segregation process are found, and the microscopic mechanism of the W-In bond transitioning from the ionic bond inside the grain to the strong covalent bond in the grain boundary region is elucidated: the difference between the grain boundary and the intragranular structure leads to a decrease in the valence state of the W atom in the grain boundary and the oxidizability is weakened, eventually leading to the W-In bond transition. The non-monotonic variation of the intrinsic segregation energy of the solute with the concentration of In in the W-In system is obtained. The mechanism of the influence of solute concentration on the intrinsic segregation energy is revealed by analyzing the bond interaction and energy: the solute concentration remarkably affects the bond strength before and after the W-In bond segregation, resulting in a significant decrease in the segregation ability when the solute concentration is close to 0.0976, and finally the variation of the segregation energy with solute concentration is obtained. Based on the analysis of the phase mechanical stability and the solute segregation in the grain boundary, without considering the vacancy concentration, the optimal solute concentration range and the range that needs to be circumvented in the W-In alloy system with high thermal stability are predicted by the calculations of the model, which are 0.106−0.125 and 0.0632−0.106, respectively. This study provides theoretical basis and quantitative guidance for designing and preparing the tungsten-based alloy materials with high thermal stability.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3