Continuous time random walk model with advection and diffusion as two distinct dynamical origins

Author:

Yang Xiao-Rong,Wang Qiong,Ye Tang-Jin,Tudeng Ci-Ren, ,

Abstract

Modeling the solute transport in geological porous media is of both theoretical interest and practical importance. Of several approaches, the continuous time random walk method is a most successful one that can be used to quantitatively predict the statistical features of the process, which are ubiquitously anomalous in the case of high Péclet numbers and normal in the case of low Péclet numbers. It establishes a quantitative relation between the spatial moment of an ensemble of solute particles and the waiting time distribution in the model. However, despite its success, the classical version of this model is a " static” one in the sense that there is no tuning parameter in the waiting time distribution that can reflect the relative strength of advection and diffusion which are two mechanisms that underlie the transport process, hence it cannot be used to show the transition from anomalous to normal transport as the Péclet numbers decreases. In this work, a new continuous time random walk model is established by taking into account these two different origins of solute particle transport in a geological porous medium. In particular, solute transitions due to advection and diffusion are separately treated by using a mixture probability model for the particle’s waiting time distribution, which contains two terms representing the effects of advection and diffusion, respectively. By varying the weights of these two terms, two limiting cases can be obtained, i.e. the advection-dominated transport and the diffusion-dominated transport. The values of scaling exponent β of the mean square displacement versus time, <inline-formula><tex-math id="M1">\begin{document}${\left( {\Delta {x} } \right)^2} \sim {t^{\rm{\beta }}}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20190088_M1.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20190088_M1.png"/></alternatives></inline-formula>, are derived for both cases by using our model, which are consistent with previous results. In the advection dominant case with the Péclet number going to infinity, the scaling exponent β is found to be equal to <inline-formula><tex-math id="M2">\begin{document}$3 - {\rm{\alpha }}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20190088_M2.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20190088_M2.png"/></alternatives></inline-formula> where <inline-formula><tex-math id="M3">\begin{document}${\rm{\alpha }} \in \left( {1,2} \right)$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20190088_M3.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20190088_M3.png"/></alternatives></inline-formula> is the anomaly exponent in the advection-originated part of the waiting time distribution that <inline-formula><tex-math id="M4">\begin{document}${{\rm{\omega }}_1}\left( {t} \right) \sim {{t}^{ - 1 - {\rm{\alpha }}}}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20190088_M4.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20190088_M4.png"/></alternatives></inline-formula>. As the Péclet number decreases, the diffusion-originated part of the waiting time distribution begins to have a stronger influence on the transport process and in the limit of the Péclet number going to 0 we observe a gradual transition of β from <inline-formula><tex-math id="M5">\begin{document}$3 - {\rm{\alpha }}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20190088_M5.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20190088_M5.png"/></alternatives></inline-formula> to 1, indicating that the underlying transport process changes from anomalous to normal transport. By incorporating advection and diffusion as two mechanisms giving rise to solute transport in the continuous time random walk model, we successfully capture the qualitative transition of the transport process as the Péclet number is varied, which is, however, elusive from the classical continuous time random walk model. Also established are the corresponding macroscopic transport equations for both anomalous and normal transport, which are consistent with previous findings as well. Our model hence fully describes the transition from normal to anomalous transport in a porous medium as the Péclet number increases in a qualitative and semi-quantitative way.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference21 articles.

1. Li N, Ren L 2012 Adv. Water Sci. 23 881
李娜,任理 2012 水科学进展 23 881

2. Bao J D 2005 Prog. Phys. 25 259
包景东 2005 物理学进展 25 259

3. Berkowitz B, Cortis A, Dentz M, Scher H 2006 Rev. Geophys. 44 RG2003

4. Metzler R, Klafter J 2000 Phys. Rep. 339 1

5. Metzler R, Barkai E, Klafter J 1999 Phys. Rev. Lett. 82 3563

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3