Cluster formulas of Co-Al-W-base superalloys

Author:

Ma Qi-Hui,Zhang Yu,Wang Qing,Dong Hong-Gang,Dong Chuang,

Abstract

Having a <inline-formula><tex-math id="M23">\begin{document}$\gamma /\gamma′ $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20181030_M23.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20181030_M23.png"/></alternatives></inline-formula> microstructure similar to Ni-base superalloys and also including various alloying elements such as Al and W, new Co-base superalloy, namely Co-Al-W-base alloy, has been widely studied as a kind of potential alternative of Ni-base superalloy, which is the most important high-temperature structural material in industrial applications. Besides, Co-Al-W-base alloy has also excellent mechanical properties, for example, creep properties comparable to those of the first-generation Ni-base single crystal superalloys. In our previous work, the ideal composition formula of Ni-base superalloy has been obtained by applying the cluster-plus-glue-atom structure model of faced centered cubic solid solution, which shows that the most stable chemical short-range-order unit is composed of a nearest-neighbor cluster and three next-neighbor glue atoms. In this paper, the ideal cluster formula of Co-Al-W-base superalloy is addressed by using the same approach. Based on cluster-plus-glue-atom model theory, according to lattice constants and atom radii, calculations are carried out. The results show that the atom radius of Al is equal to Covalent radius (0.126 nm) and for <inline-formula><tex-math id="M24">\begin{document}$\gamma′ $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20181030_M24.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20181030_M24.png"/></alternatives></inline-formula> phase the atom radius of W changes obviously (0.1316 nm). After analyzing atomic radii, the chemical formula for Co-Al-W ternary alloy is calculated to be [Al-Co<sub>12</sub>](Co,Al,W)<sub>3</sub>, which signifies an Al centered atom and twelve Co nearest-neighbored cluster atoms plus three glue atoms, which is in good consistence with that for Ni-base single crystal superalloy. For multi-element alloy, the alloying elements are classified, according to the heat of mixing between the alloying elements and Co as well as partition behavior of alloying elements, as solvent elements-Co-like elements <inline-formula><tex-math id="M25">\begin{document}$\overline {{\rm{Co}}} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20181030_M25.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20181030_M25.png"/></alternatives></inline-formula> (Co, Ni, Ir, Ru, Cr, Fe, and Re) and solute elements-Al-like elements <inline-formula><tex-math id="M26">\begin{document}$\overline {{\rm{Al}}} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20181030_M26.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20181030_M26.png"/></alternatives></inline-formula> (Al, W, Mo, Ta, Ti, Nb, V, etc.). The solvent elements can be divided into two kinds according to partition behaves: <inline-formula><tex-math id="M27">\begin{document}${\overline {{\rm{Co}}} ^{\gamma }}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20181030_M27.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20181030_M27.png"/></alternatives></inline-formula> (Cr, Fe, and Re) and <inline-formula><tex-math id="M28">\begin{document}${\overline {{\rm{Co}}} ^{\gamma′}}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20181030_M28.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20181030_M28.png"/></alternatives></inline-formula> (Ni, Ir, and Ru). The latter is further grouped into Al, <inline-formula><tex-math id="M29">\begin{document}${\overline {\rm{W}} }$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20181030_M29.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20181030_M29.png"/></alternatives></inline-formula> (W and Mo, which have weaker heat of mixing than Al-Co ) and <inline-formula><tex-math id="M30">\begin{document}${\overline {{\rm{Ta}}} }$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20181030_M30.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20181030_M30.png"/></alternatives></inline-formula> (Ta, Ti, Nb, V, etc., which have stronger heat of mixing than Al-Co). Then all chemically complex Co-Al-W-base superalloys are simplified into <inline-formula><tex-math id="M31">\begin{document}$\overline {{\rm{Co}}} \text{-} \overline {{\rm{Al}}} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20181030_M31.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20181030_M31.png"/></alternatives></inline-formula> pseudo-binary or <inline-formula><tex-math id="M32">\begin{document}$\overline {{\rm{Co}}} \text{-} {\rm{Al}} \text{-} \left( {\overline {\rm{W}},\overline {{\rm{Ta}}} } \right)$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20181030_M32.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20181030_M32.png"/></alternatives></inline-formula> pseudo-ternary system. Within the framework of the cluster-plus-glue-atom formulism and by analyzing the compositions of alloy, it is shown that the Co-Al-W-base superalloy satisfies the ideal formula <inline-formula><tex-math id="M33">\begin{document}$\left[ {\overline {{\rm{Al}}} \text{-} {{\overline {{\rm{Co}}} }_{12}}} \right]\left( {{{\overline {{\rm{Co}}} }_{1.0}}{{\overline {{\rm{Al}}} }_{2.0}}} \right)$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20181030_M33.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20181030_M33.png"/></alternatives></inline-formula> (or <inline-formula><tex-math id="M34">\begin{document}$\left[ {{\rm{Al}} \text{-} {{\overline {{\rm{Co}}} }_{12}}} \right]{\overline {{\rm{Co}}} _{1.0}}{\rm{A}}{{\rm{l}}_{0.5}}{\left( {\overline {\rm{W}},\overline {{\rm{Ta}}} } \right)_{1.5}}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20181030_M34.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20181030_M34.png"/></alternatives></inline-formula> = <inline-formula><tex-math id="M35">\begin{document}${\overline {{\rm{Co}}} _{81.250}}{\rm{A}}{{\rm{l}}_{9.375}}{\left( {\overline {\rm{W}},\overline {{\rm{Ta}}} } \right)_{9.375}}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20181030_M35.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20181030_M35.png"/></alternatives></inline-formula> at.%). In the same way, those of <inline-formula><tex-math id="M36">\begin{document}$\gamma $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20181030_M36.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20181030_M36.png"/></alternatives></inline-formula> and <inline-formula><tex-math id="M37">\begin{document}$\gamma′ $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20181030_M37.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20181030_M37.png"/></alternatives></inline-formula> phases are respectively <inline-formula><tex-math id="M38">\begin{document}$\left[ {\overline {{\rm{Al}}} \text{-} {{\overline {{\rm{Co}}} }_{12}}} \right]\left( {{{\overline {{\rm{Co}}} }_{1.5}}{{\overline {{\rm{Al}}} }_{1.5}}} \right)$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20181030_M38.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20181030_M38.png"/></alternatives></inline-formula> (or <inline-formula><tex-math id="M39">\begin{document}$\left[ {{\rm{Al}} \text{-} {{\overline {{\rm{Co}}} }_{12}}} \right]{\overline {{\rm{Co}}} _{1.5}}{\rm{A}}{{\rm{l}}_{0.5}}{\left( {\overline {\rm{W}},\overline {{\rm{Ta}}} } \right)_{1.0}}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20181030_M39.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20181030_M39.png"/></alternatives></inline-formula> = <inline-formula><tex-math id="M40">\begin{document}${\overline {{\rm{Co}}} _{84.375}}{\rm{A}}{{\rm{l}}_{9.375}}{\left( {\overline {\rm{W}},\overline {{\rm{Ta}}} } \right)_{6.250}}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20181030_M40.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20181030_M40.png"/></alternatives></inline-formula> at.%) and <inline-formula><tex-math id="M41">\begin{document}$\left[ {\overline {{\rm{Al}}} \text{-} {{\overline {{\rm{Co}}} }_{12}}} \right]\left( {{{\overline {{\rm{Co}}} }_{0.5}}{{\overline {{\rm{Al}}} }_{2.5}}} \right)$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20181030_M41.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20181030_M41.png"/></alternatives></inline-formula> (or <inline-formula><tex-math id="M42">\begin{document}$\left[ {{\rm{Al}} \text{-} {{\overline {{\rm{Co}}} }_{12}}} \right]{\overline {{\rm{Co}}} _{0.5}}{\rm{A}}{{\rm{l}}_{0.5}}{\left( {\overline {\rm{W}},\overline {{\rm{Ta}}} } \right)_{2.0}}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20181030_M42.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20181030_M42.png"/></alternatives></inline-formula> = <inline-formula><tex-math id="M43">\begin{document}${\overline {{\rm{Co}}} _{78.125}}{\rm{A}}{{\rm{l}}_{9.375}}{\left( {\overline {\rm{W}},\overline {{\rm{Ta}}} } \right)_{12.500}}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20181030_M43.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20181030_M43.png"/></alternatives></inline-formula> at.%). For example, alloy Co<sub>82</sub>Al<sub>9</sub>W<sub>9</sub> and its <inline-formula><tex-math id="M44">\begin{document}$\gamma $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20181030_M44.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20181030_M44.png"/></alternatives></inline-formula> and <inline-formula><tex-math id="M45">\begin{document}$\gamma′ $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20181030_M45.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20181030_M45.png"/></alternatives></inline-formula> phases are formulated respectively as [Al-Co<sub>12</sub>]Co<sub>1.1</sub>Al<sub>0.4</sub>W<sub>1.4</sub> (~ [Al-Co<sub>12</sub>]Co<sub>1.0</sub>Al<sub>0.5</sub>W<sub>1.5</sub>), [Al-Co<sub>12</sub>]Co<sub>1.6</sub>Al<sub>0.4</sub>W<sub>1.0</sub> (~ [Al-Co<sub>12</sub>]Co<sub>1.5</sub>Al<sub>0.5</sub>W<sub>1.0</sub>), and [Al-Co<sub>12</sub>]Co<sub>0.3</sub>Al<sub>0.5</sub>W<sub>2.2</sub> (~[Al-Co<sub>12</sub>]Co<sub>0.5</sub>Al<sub>0.5</sub>W<sub>2.0</sub>).

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3