Enhanced stimulated Raman scattering by suppressing stimulated Brillouin scattering in liquid water

Author:

Shi Jiu-Lin,Xu Jin,Luo Ning-Ning,Wang Qing,Zhang Yu-Bao,Zhang Wei-Wei,He Xing-Dao, ,

Abstract

Stimulated Brillouin scattering (SBS) and stimulated Raman scattering (SRS) are two kinds of emblematic inelastic scattering processes resulting from the interaction of high-intensity laser with matter. Generally, competition between SBS and SRS is a common phenomenon in many substances. In liquid or high-pressure gas, if a single longitudinal mode laser is used as a pump source, both SBS and SRS can be excited, but the SBS will become very strong due to higher gain and optical phase conjugation. In comparison, the SRS gain is typically 2 orders of magnitude smaller than the SBS gain so that most of the pump laser energy is spent on the SBS and the SRS is greatly suppressed. To improve the output energy of SRS in liquid medium, a method of suppressing the SBS process by controlling temperature of medium is proposed. The SRS generation system using broadband pulse laser of 532 nm in wavelength as a pumping source is designed, the output energy of forward SRS (FSRS) and backward SBS (BSBS) in water with different temperatures are measured, and the physical mechanisms of the influences of water temperature, pumping linewidth and thermal defocusing on the output energy of SRS are analyzed. The experimental results indicate that by reducing the water temperature, the SBS process can be significantly suppressed, and the beam distortion caused by thermal defocusing effect can be reduced, thus effectively improving the output energy of SRS. Unlike the single longitudinal mode laser, when the pump source is handled in multiple longitudinal modes with a wide linewidth, the gain of FSRS is higher than that of the backward SRS (BSRS). Meanwhile, since the SBS gain coefficient is restricted by the linewidth of the pump laser, the FSRS process is dominant and both backward SBS and BSRS are significantly suppressed. It is necessary to state that none of the influence of backward SRS, self-focusing, optical breakdown and other non-linear effects on the output energy of SRS is considered in this paper, and only the effectiveness of reducing temperature to improve the energy output of forward SRS is verified from the perspective of temperature change. The results are of great significance for the multi-wavelength conversion of SRS in liquid medium.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference25 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3