Real-time measurement of dynamic evolution of absorption and emission properties of chromophores in single conjugated polymer molecules

Author:

Shi Ying,Li Yao,Zhou Hai-Tao,Chen Rui-Yun,Zhang Guo-Feng,Qin Cheng-Bing,Gao Yan,Xiao Lian-Tuan,Jia Suo-Tang, ,

Abstract

Conjugated polymers have been widely used in optical sensors, light-emitting diodes and solar cells, due to their attractive optical and semiconducting properties. It is widely accepted that the optical and electrical properties of conjugated polymer molecules depend on the conjugated segments, i.e., chromophores in conjugated polymer molecule. The study of the evolution of the absorption and emission properties of single conjugated polymer molecules is essential to provide complementary information for the influence of conformation of conjugated polymer on its energy transfer process, as well as on the performance of optoelectronic devices based on conjugated polymers. Although the extensive studies have been reported to elucidate the optical properties of conjugated polymers with single molecule spectroscopy, simultaneous revealing their absorption and emission properties and their real-time evolution are rarely reported. In this paper, we simultaneously measure the absorption and emission properties of chromophores in single Poly[2,7-(9,9-dioctylfluorene)-<i>alt</i>-4,7-bis(thiophen-2-yl)benzo-2,1,3-thiadiazole](PFO-DBT) conjugated polymer molecules and their real-time evolution by frequency-domain reconstructed defocused wide-field imaging. The emission dipole orientation of chromophore is achieved by applying defocused wide-field fluorescence imaging. The change of defocused patterns of individual polymer chain describes the angular distribution of emitted light and thus the emitting dipole orientation. Meanwhile, the absorption dipole orientation of chromophore in single conjugated PFO-DBT polymer molecule can be clarified in reconstructed frequency-domain imaging by modulating the relative phase of the pulse pairs and performing Fourier transform to the photoluminescence response. The population density of excited state of absorbing chromophore depends both on the relative phase between the ultrashort pulse pairs and on the orientation of absorption transition dipole moment of the chromophore. By extracting the frequency-domain information of fluorescence that is proportional to the population density of excited state, the evolution of absorption dipole orientation of chromophore can be derived. We distinguish three cases for the evolution of chromophores of single PFO-DBT conjugated polymer molecules: the absorption and emission chromophores both keep constant in single PFO-DBT conjugated polymer molecules; one of the dipole orientations of absorption and emission changes, while the other remains unchanged; both of them change simultaneously. The results may pave the way for the further understanding of the role of conformation in the energy transfer pathway in both natural and artificial light harvesting systems at nano- and micro-level.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3