Omnidirectional cloaking based on spoof surface plasmonic structure

Author:

Quan Jia-Qi,Sheng Zong-Qiang,Wu Hong-Wei, ,

Abstract

Surface plasmons include surface plasmon polaritons and localized surface plasmons, which are electromagnetic wave confined at the interface of the metal and dielectric. Spoof surface plasmonic structure has many special optical properties, which is of great significance for designing new-generation optical elements. In order to transfer the features of the surface plasmon polaritons and localized surface plasmons to microwave-terahertz region, Pendry et al. (Pendry J B, Martin-Moreno L, Garcia-Vidal F J 2004 <i>Science</i> <b>305</b> 847) have proposed the spoof surface plasmon polaritons based on a metal structure with grooved stripes. In this paper, a hollow textured perfect electric conductor cylinder with periodic cut-through slits structure is designed to suppress the light scattering of the object in any direction and achieve the effect of omnidirectional cloaking while the transverse magnetic polarization wave propagates along the <i>x</i> direction. And the locations of the electrical and magnetic modes can be freely modulated by tailoring the structural geometric construction. In order to find the physical mechanism behind the abnormal phenomenon, through theoretical analysis and numerical simulation, we find that the strong scattering suppression of this spoof surface plasmonic polariton structure is caused by the interference between the background wave and Mie scattering of the structural unit, and it can be equivalent to a ring metamaterial due to the special structural design, in order to achieve the omnidirectional cloaking. It implies that we can hide objects in metal strips due to the fact that the metal in the microwave-to-terahertz region is equivalent to a perfect electrical conductor. This opens up a new way to analyzing the physical cloaking and optical response of spoof surface plasmonic polaritons structure. In addition, we also analyze the influence of the structure on the movement law of the scattering spectrum under different structural parameters. This enables us to have an in-depth understanding of the influence of structural parameters on the structural scattering spectrum. Our results can be applied to the microwave-to-terahertz region and a variety of advanced optic devices such as radars, cloaking coatings, sensors and detectors.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3