Single-axial-mode Nd:YAG laser with precisely controllable laser pulse output time

Author:

Dai Shu-Tao,Jiang Tao,Wu Li-Xia,Wu Hong-Chun,Lin Wen-Xiong, ,

Abstract

In recent years, high-energy single-axial-mode Q-switched lasers have been widely studied and applied because of their wide applications such as in nonlinear optics, laser spectroscopy and light detection and ranging (LIDAR). Many applications require a Q-switched pulse that has not only single axial mode but also can be synchronized with an external system. But two most commonly used methods (the build-up time reducing technique and ramp fire technique) are difficult to achieve single-axial mode operation. In this work, we apply the ramp-hold-fire technique to an injection-seeded Nd:YAG laser. The slave oscillator is a self-filtering unstable resonator (SFUR). The SFUR oscillator can achieve a smooth spatial profile TEM<sub>00</sub> transverse mode. An RTP electro-optical crystal is adopted for intracavity phase modulator to modify the effective optical path length of the slave oscillator cavity. The seed-injection locking is realized by the ramp-hold-fire technique. The laser driver generates a pumping pulse. After a suitable time delay the driver is fired, a linear ramp voltage is applied to the RTP crystal. A photodiode detector monitors the interference signal. As soon as the interference peak is detected, the controlling electronics produces a stop signal. The ramp voltage on the RTP crystal is stopped and held at a fixed value. Then the Q-switch is fired at a set time, and finally single axial mode laser is demonstrated. Combining the advantages of intracavity phase modulation and Q-switch exact synchronization of the ramp hold fire technique, we obtain a narrow linewidth single-axial-mode laser pulse with precisely controllable output time. The laser is capable of generating 1064 nm pulse energy large than 50 mJ. The pulse build-up time is reduced by 31 ns to 48 ns. The pulse firing time is precisely controlled with jitter less than 1%. Then the frequency spectrum of the 1064 nm laser is measured with a commercial Fizeau wavemeter HighFinesse WS7. The multi-beam interference patterns of the pulse are shown to be smooth in the wavemeter. The wavelength is measured to be 1064.40416 nm and the linewidth is less than 0.5 pm which is limited by the instrument resolution. Meanwhile, the frequency stability is measured to be less than 0.1 pm (V-V) over 1700 pulses with a working frequency of 0.1 Hz.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3