Measurement-device-independent quantum key distribution under K-distributed strong atmospheric turbulence

Author:

Gu Wen-Yuan,Zhao Shang-Hong,Dong Chen,Zhu Zhuo-Dan,Qu Ya-Yun, ,

Abstract

Free-space quantum key distribution (QKD) allows two distant parties to share secret keys with information-theoretic security, which can pave the way for satellite-ground quantum communication to set up a global network for sharing secret message. However, free-space channels in the presence of atmospheric turbulence are affected by losses and fluctuating transmissivity which further affect the quantum bit error rate and the secure key rate. To implement free-space QKD, it is indispensable to study the effect of atmospheric turbulence. Different models have been used to describe the probability distribution for channel transmission coefficient under atmospheric turbulence, including the log-normal distribution and K distribution. In this paper, we focus on free space measurement-device-independent quantum key distribution (MDI-QKD) under K-distributed strong atmospheric turbulence. The MDI-QKD can close all loopholes on detection and achieve a similar performance to QKD, relying on time-reversed version of entanglement-based QKD protocol. Threshold post-selection method is adopted to restrain detrimental effects of the atmospheric turbulence, which is based on the selection of the intervals with higher channel transmissivity. By combining the general MDI-QKD system model with this method, we present a framework for the optimal choice of threshold. Our simulation result shows that the optimal threshold is dependent on the turbulence intensity and expected channel loss. Furthermore, compared with the original MDI-QKD protocols, the proposed protocol with threshold post-selection method can acquire a considerable better performance in key rate, especially in regions of high turbulence and high loss. What is more, this is instructive to the building of a practical free-space MDI-QKD system with better performance.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3