Structured illumination for two-dimensional laser induced fluorescence imaging to eliminate stray light interference

Author:

Yan Bo,Chen Li,Chen Shuang,Li Meng,Yin Yi-Min,Zhou Jiang-Ning,

Abstract

<sec>Laser sheet imaging, also called planar laser imaging, is one of the most versatile optical imaging techniques and has been frequently used in several different areas. However, when applied to the limited operating space and strong light scattering media, the light originating from indirect reflections, multiple scattering and surrounding backgrounds can produce error especially in intensity-ratio based measurements.</sec><sec>This work is motivated by these challenges, with the overall aim of making laser sheet imaging technique applicable for the study of eliminating the stray light interference. Therefore a novel two-dimensional imaging technique named structured laser illumination planar imaging (SLIPI) is developed based on planar laser imaging but uses a sophisticated illumination scheme i.e. spatial intensity modulation, to differentiate between the intensity contribution arising from useful signals and that from stray light. By recording and dealing with images, the SLIPI method can suppress the diffuse light and retain the useful signals.</sec><sec>In this paper, we first use the MATLAB software to simulate the phase-shift SLIPI method, and the results show that the stray light interference can be eliminated completely. Furthermore, the phase-shift SLIPI is combined with the liquid solution (Rhodamine B solution) laser induced fluorescence (LIF) approach to imagine the concentration distribution. By recording three images, between which this encoding is changed noticeably only for the useful LIF signals, the phase-shift SLIPI method is evidenced to be able to remove the diffuse light contribution, thus improving and enhancing the visualization quality. The instantaneous SLIPI images of rapidly moving samples, a key feature to study dynamic liquid solution diffusion behavior, are also acquired. The lock-in amplifier SLIPI technique is then experimentally studied under Rhodamine B diffused solution, and the phase-shift SLIPI method can remove the unwanted background interferences and achieve the significant improvements in terms of pronounced concentration distribution within the Rhodamine B solution.</sec><sec>The SLIPI technique is relatively inexpensive: the cost does not exceed the cost of an ordinary laser sheet arrangement noticeably, and it can combine with several other linear imaging techniques, such as Rayleigh scattering, particle image velocimetry and laser-induced phosphorescence. </sec>

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference26 articles.

1. Gal P L, Farrugia N, Greenhalg D A 1999 Opt. Laser Technol. 31 75

2. Driscoll K D, Sick V, Gray C 2003 Exp. Fluids 35 112

3. Schultz C, Sick V 2005 Prog. Energ. Combust. 31 75

4. Adrian R J 2005 Exp. Fluids 39 159

5. Chen S, Su T, Yang F R, Zhang L, Zheng Y B 2013 Chin. Opt. Lett. 11 65
陈爽, 苏铁, 杨富荣, 张龙, 郑尧邦 2013 中国光学快报 11 65

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3