Plasmon resonance energy transfer and research progress in plasmon-enhanced photocatalysis

Author:

Zhou Li,Wang Qu-Quan, , ,

Abstract

Plasmon resonance energy transfer refers to the coherent energy transfer via dipole-dipole coupling from surface plasmons to adjacent exciton nanosystems such as semiconductor quantum dots or dye molecules. The plasmon resonance energy transfer is a non-radiative plasmon decay pathway, which can also act as an available channel to extract the plasmon-harvested energy. In addition, hot electron relaxation (non-radiative channel) and scattering (radiative channel) are also the dissipation pathways of surface plasmon resonances. The plasmon-harvested energy can be effectively transferred to other nanosystems or converted into other energy forms through these correlated dissipation pathways. In this paper, the underlying mechanism and dynamics of the plasmon resonance energy transfer as well as the related energy and charge transfer processes (such as near field enhancement and coupling, far field scattering, plasmon-induced hot electron transfer) are introduced. The recent research progress of the plasmon-enhanced photocatalysis by energy and charge transfer is reviewed.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3