Recent advances in perovskite solar cells: Space potential and optoelectronic conversion mechanism

Author:

Wang Yan-Bo,Cui Dan-Yu,Zhang Cai-Yi,Han Li-Yuan,Yang Xu-Dong,

Abstract

Perovskite solar cells, as a promising next-generation photovoltaic technology for large-scale application, have demonstrated the advantages of high absorption coefficient, tunable bandgap, considerable photoelectric conversion efficiency and low-cost fabrication. However, the photoelectric conversion process within the device is still not understood clearly. One of the major reasons is that it is difficult to directly observe the space potential inside the device and its effect on the photogenerated charge carriers. The direct measurement and analysis of the space potential inside the device and the clarification of the intrinsic relationship between the space potential and the charge carrier micro-process under illumination and different electric field conditions can reveal the photoelectric conversion mechanism in depth, and thus providing the scientific research basis for the further development. Kelvin probe force microscopy (KPFM), a testing technology that is non-contact, can detect the space potential distribution without any damage to the device, demonstrating the great potential to unveil the working mechanism of perovskite solar cells accurately. Such a characterization method can work under vacuum condition. The KPFM combines Kelvin method of measuring contact potential difference with the scan probe microscopy to characterize internal carrier dynamic behavior with high resolution on a nanometer scale. The study of the spatial potential distribution of semiconductor device plays an important role in understanding the working mechanism of new perovskite solar cells. For example, under an open-circuit condition, the intensity and width of the electric field and space charge region can be obtained from the spatial potential distribution, and the bending direction of the energy band can be judged according to the increase or decrease of the potential. While in a short-circuit case, the generation and transport of charge carriers can be obtained. In this review, we mainly introduce the research progress of the space potential distribution and optoelectronic conversion mechanism in perovskite solar cells. The key mechanism of charge carrier generation, separation, transport and recombination are revealed by using KPFM to directly observe the space potential variations caused by light or electric field. We also prospect the issues and challenges in the future research.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3