Optimal estimation retrieval for directional polarimetric camera onboard Chinese Gaofen-5 satellite: an analysis on multi-angle dependence and a posteriori error

Author:

Zheng Feng-Xun,Hou Wei-Zhen,Li Zheng-Qiang, , ,

Abstract

Data from the directional polarimetric camera (DPC) instrument onboard Chinese Gaofen-5 satellite dedicated to aerosol monitoring have been available recently. By measuring the spectral, angular and polarization properties of the radiance at the top of atmosphere (TOA), a DPC provides the aerosol optical depths (AODs) as well as partial microphysical aerosol properties. In order to evaluate the capability and the retrieval uncertainty of DPC sensor systematically, the information content and a posteriori error analysis are applied to the synthetic data of DPC multi-angle observation in this paper, which inherits from the optimal estimate theoretical framework. The forward simulation is conducted by the unified linearized vector radiative transfer model (UNL-VRTM), and the Jacobians of four Stokes elements with respect to aerosol and surface model parameters can be obtained simultaneously. Firstly, the error influences of surface parameter on the TOA measurements are simulated. The results indicate that a 10% relative error of parameter <i>k</i><sub>1</sub> in the improved BRDF model results in about 4.65% error of the TOA reflectance, while the error of TOA polarized reflectance caused by the same error of parameter <i>C</i> in BPDF model is negligibly small. Secondly, the multi-angle dependence of total information content in DPC measurements is investigated. It is shown that the information content increases significantly with the number of viewing angles, especially for the measurements of the first 9 angles. The DPC multi-angle observation can provide extra 5 degrees of freedom for signal (DFS) for the retrieval of aerosol and surface parameters, in which the retrieval of aerosol parameters is more sensitive to observation geometries than the retrieval of surface parameters in most cases. In addition, the total aerosol DFS increases with the range extension of scattering angle under the same number of viewing angles. After that, the DFS of each retrieved aerosol and surface parameter are given. For the aerosols, the volume concentration, real-part refractive index and effective radius show a high DFS (greater than 0.8). For the surfaces, the mean DFS of each parameter is greater than 0.5, which indicates the well capability of DPC in the surface retrieval. Finally, the a posteriori error of each aerosol, surface parameter and corresponding vary with the number of viewing angles, and the observation error and aerosol model error are discussed. The a posteriori error decrease significantly with the number of viewing angles, and the influence of the aerosol model error on the a posteriori error is not remarkable. In general, the observation error is the main influence factor on the uncertainty of the inversion results.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference43 articles.

1. IPCC 2014 Climate Change 2014: Synthesis Report (Geneva: IPCC Secretariat) pp2–8

2. Diner D J, Chipman R A, Beaudry N, Cairns B, Food L D, Macenka S A, Cunningham T J, Seshadri S, Keller C 2005 Enabling Sensor and Platform Technologies for Spaceborne Remote Sensing (Bellingham: Spie-Int Soc Optical Engineering) pp88–96

3. Hasekamp O P, Landgraf J 2007 Appl. Opt. 46 3332

4. Mishchenko M I, Geogdzhayev I V, Cairns B, Carlson B E, Chowdhary J, Lacis A A, Liu L, Rossow W B, Travis L D 2007 J. Quant. Spectrosc. Radiat. Transfer 106 325

5. Herman M, Deuzé J L, Marchand A, Roger B, Lallart P 2005 J. Geophys. Res. 110 D10S02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3