Group velocity dispersion analysis of terahertz quantum cascade laser frequency comb

Author:

Zhou Kang,Li Hua,Wan Wen-Jian,Li Zi-Ping,Cao Jun-Cheng, ,

Abstract

The frequency comb which is characterized by equally-spaced frequency lines with high mode coherence has received much attention since its first demonstration in near-infrared and optical frequency range. In the terahertz frequency range, the electrically-pumped terahertz quantum cascade laser (THz QCL) based on semiconductors is an ideal candidate for achieving frequency comb operation in a frequency range between 1 THz and 5 THz. The group velocity dispersion (GVD) is a key factor for the frequency comb. A higher GVD can pull the frequencies from their equidistant values and limit the comb bandwidth. Therefore the laser dispersion needs to be compensated for in order to make the total GVD sufficiently low and flat, such as using a Gires-Tournois interferometer (GTI) or the double chirped mirror (DCM). However, a successful design still depends on the knowledge of the total GVD in the laser. In this paper, we show how to calculate the GVD in metal-metal waveguide THz QCLs by taking into account the dispersions from the GaAs material, the waveguide, and the laser gain, which conduces to the understanding of the frequency comb behavior. The waveguide loss is modelled by the finite element method. The loss due to intersubband absorption is calculated by Fermi's gold rule. All the losses, i.e., waveguide loss, mirror loss, and intersubband absorption loss, are summed up to calculate the clamped gain. The material loss can be calculated by using the reststrahlen band model. Because of these losses and gain, the refractive index needs to be replaced by a complex refractive index. The real part of the complex refractive index is the refractive index, which can be calculated from the Kramers-Kronig relationship that connects the loss or gain with the refractive index. Then the GVD introduced by the material loss, waveguide loss, and clamped gain can be finally calculated. The results show that the total GVD of THz QCL is approximately –8 × 10<sup>5</sup>~8 × 10<sup>5</sup> fs<sup>2</sup>/mm which is strongly determined by the clamped gain. Finally, the developed numerical model is employed to study the dispersion compensation effect of a GTI mirror which is coupled into a QCL gain cavity. The design of the THz QCL based on GTI structure is more flexible and feasible than that of the DCM. The result shows that by carefully designing the geometry of GTI, the dispersion of a THz QCL can be compensated for, thus achieving the broadband terahertz frequency combs.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3