Antireflection coatings based on subwavelength artificial engineering microstructures

Author:

Yao Yao,Shen Yue,Hao Jia-Ming,Dai Ning, ,

Abstract

When light passes through an interface between two media with different refractive indices, part of light energy is reflected and thus causes an inevitable optical reflection. Optical anti-reflection is of great importance for applications in a wide range such as solar cells, optical lenses, infrared sensors, and photo-detectors, which has long been a research topic in the fields of optical systems and optoelectronic devices. In this article, the recent research progress of the optical anti-reflection based on subwavelength artificial engineering materials is reviewed. Having made a brief review of conventional anti-reflection methods, we focus on the overview of the newly developed techniques for optical anti-reflection, such as eliminating reflection by exciting the localized surface plasmons, the enhancement of transmission induced by the excitation of propagating surface plasmons, making metals transparent by the help of metamaterials, and the reduction of anti-reflection in long wavelength infrared and terahertz spectral ranges by using metasurfaces. Compared with the conventional anti-reflection methods, the new technique usually does not suffer the limitation of material, and it benefits from enhanced light absorption and wide incidence angle response. The new technique also enables the design of anti-reflection over wide or a multiple wavelength band. Finally, the future opportunities and challenges for further developing the subwavelength artificial engineering microstructures in optical anti-reflection are also predicted.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3