Ab initio calculation of hyperfine-structure constant A of Fr and evaluation of magnetic dipole moments of Fr isotopes

Author:

Lou Bing-Qiong,Li Fang,Wang Pei-Yan,Wang Li-Ming,Tang Yong-Bo, ,

Abstract

As the heaviest atom in alkali-metal elements, Fr atom has been regarded as a candidate for the search of the permanent electric dipole moment of the electron and of parity-nonconservation effects. Accurate knowledge of Fr atomic properties is of great interest. In this work, we use a relativistic coupled-cluster method to calculate the magnetic dipole hyperfine structure constants for <i>n</i>S (<i>n</i> = 7-12), <i>n</i>P (<i>n</i> = 7-12) and <i>n</i>D (<i>n</i> = 6-11) states of <sup>212</sup>Fr. A finite B-spline basis set is used to expand the Dirac radial function, including completely the single and double excitation in correlation calculation. Our results are compared with available theoretical and experimental values. The comparison shows that our method can offer accurate calculation of magnetic dipole hyperfine structure constant. For 7P state the differences between our results and experimental values are within 1%. The magnetic dipole hyperfine structure constants for 12S, <i>n</i>P (<i>n</i> = 9-12) and <i>n</i>D (<i>n</i> = 10-11) states are reported for the first time, which are very useful as benchmarks for experimental measurements and calculations by other theoretical methods of these quantities. In the relativistic coupled-cluster theoretical framework, we study the electron correlation effect on hyperfine-structure constant <i>A</i> for the S, P, and D states of Fr. We observe that the electron correlation effect is very important for hyperfine-structure constant properties. The D state has a considerable correlation effect. At the same time, we also investigate contribution trends of individual electron correlation effects involving direct, core-polarization and pair-correlation ones in S, P, and D Rydberg series. It is found that the dominant contributions for the S<sub>1/2</sub>, P<sub>1/2,3/2</sub> and <i>n</i>D<sub>3/2</sub> (<i>n</i> = 7-11) states are to from the direct effect; however, the dominant contributions for the 6D<sub>3/2</sub>, and <i>n</i>D<sub>5/2</sub> (<i>n</i> = 6-11) states are due to the pair-correlation and the core-polarization, respectively. For D<sub>5/2</sub> states, there is very strong cancellation among these individual correlation effects. The knowledge of these correlation trends is useful for studying the permanent electric dipole moment and parity-nonconservation effect of Fr in future. Moreover, the magnetic dipole moment <inline-formula><tex-math id="M2">\begin{document}$ {\mu}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="9-20190113_M2.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="9-20190113_M2.png"/></alternatives></inline-formula> for each of isotopes <sup>207−213,220−228</sup>Fr is determined by combining with experimental values for magnetic dipole hyperfine structure constant of 7P state. For each of isotope <sup>207−213</sup>Fr, our magnetic dipole moment <inline-formula><tex-math id="M3">\begin{document}$ {\mu}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="9-20190113_M3.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="9-20190113_M3.png"/></alternatives></inline-formula> is perfectly consistent with the experimental value, and our uncertainties are twice smaller than those in the experiments . For each of isotope <sup>220−228</sup>Fr, our magnetic dipole moment <inline-formula><tex-math id="M4">\begin{document}$ {\mu}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="9-20190113_M4.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="9-20190113_M4.png"/></alternatives></inline-formula> has a larger uncertainty, but is still in agreement with the experimental magnetic dipole moment <inline-formula><tex-math id="M5">\begin{document}$ {\mu}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="9-20190113_M5.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="9-20190113_M5.png"/></alternatives></inline-formula>.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3