Author:
Chen Yan-Hui,Wang Jin-Dong,Du Cong,Ma Rui-Li,Zhao Jia-Yu,Qin Xiao-Juan,Wei Zheng-Jun,Zhang Zhi-Ming, ,
Abstract
Nowadays, the practical security of quantum key distribution (QKD) is the biggest challenge. In practical implementation, the security of a practical system strongly depends on its device implementation, and device defects will create security holes. The information leakage from a receiving unit due to secondary photon emission (backflash) is caused by a single-photon detector in the avalanche process. Now studies have shown that the backflash will leak the information about time and polarization and the eavesdropping behavior will not generate additional error rate in the communication process. An eavesdropping scheme obtaining time information by using backflash is proposed. Targeting this security hole for backflash leaking polarization information, an eavesdropping scheme for obtaining polarization information by using backflash is proposed in free-space QKD; however, it has not been reported in fiber QKD. In this study, the eavesdropping scheme and countermeasures for obtaining information by using backflash in fiber polarization-coded QKD is proposed. Since the polarization state of the fiber polarization-coded QKD system is easy to change, the scheme is proposed based on the time-division multiplexing polarization compensation fiber polarization-coded QKD system. In theory, the eavesdropper in this scheme obtaining the key information by using the backflash is theoretically deduced, and corrects the polarization change of the backflash by time-division multiplexing polarization compensation method, thus obtaining the accurate polarization information. The probability of backflash in the fiber polarization-coded QKD is measured to be 0.05, and the information leakage in the proposed eavesdropping scheme is quantified. The lower limit of the information obtained by the eavesdropper is 2.5 × 10<sup>–4</sup>. Due to the fact that the polarization compensation process increases invalid information in actual operation, the information obtained by the eavesdropper will be further reduced, thus obtaining the lower limit of information leakage. The results show that the backflash leaks a small amount of key information in a time-multiplexed polarization-compensated fiber polarization-coded QKD system. The wavelength characteristics of the backflash can be utilized to take corresponding defense methods. Backflash has a wide spectral range, and the count of backflash has a peak wavelength. So, tunable filters and isolators can be used to reduce backflash leakage, thereby reducing the information leakage.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献