Theoretical analysis and simulation of W-band sheet beam extended interaction klystron amplifier

Author:

Zeng Zao-Jin,Ma Qiao-Sheng,Hu Lin-Lin,Jiang Yi,Hu Peng,Lei Wen-Qiang,Ma Guo-Wu,Chen Hong-Bin,

Abstract

The sheet beam extended interaction klystron is an important kind of millimeter-wave and sub-millimeter-wave vacuum electron device, which has extensive applications such as in high resolution radar, imaging system, satellite communication and precision guided missiles. Compared with conventional pencil beam klystron, the sheet beam extended interaction klystron, in which a thin rectangular sheet beam is used, can generate higher power by obtaining higher current and reducing space-charge-effect of electron beam. Kinematical theory and space charge wave theory are extensively used to analyze the bunching process of electrons. Kinematical theory is precise when electron beam is especially small because the influence of space charge effect is ignored, while space charge wave theory is accurate when the modulation of electron beam is small since it is based on the premise of small amplitude. Electron flow oscillatory theory is a compromise between kinematical theory and space charge wave theory, which adapts to the bigger modulation of electron beam than space charge wave theory, while it is inaccurate in the case of big bunching parameter. Based on electron flow oscillatory theory under the small signal condition, the influence of electron beam on standing wave electric field of 2π mode in a three-gap cavity is analyzed, and the expressions of beam loading conductance and beam loading susceptance in a three-gap cavity are obtained. The influences of plasma frequency, transit angle of single gap and transit angle of drift on the interaction of beam and wave in a three-gap cavity are discussed. The results show that space-charge-effect of beam is unbeneficial to the interaction between beam and wave, otherwise beam loading conductance and beam loading susceptance fluctuate with the increasing of transit angle of single gap and transit angle of drift. A W-band sheet beam extended interaction klystron is designed by theoretical analysis and 3D PIC software. The output power of 5773 W at 94.47 GHz is obtained with an efficiency of 8.46%, a gain of 37.6 dB and a 3 dB bandwith of about 140 MHz, when beam voltage is 19.5 kV, current is 3.5 A and focus magnetic field is 0.85 T. This research is important for the engineering of the W-band sheet beam extended interaction klystron amplifier.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3