Analysis of the granular pressure and velocity field of hourglass flow based on the local constitutive law

Author:

Zhou Yi-Xian,

Abstract

Granular medium is ubiquitous in nature, and is an important issue in many infrastructural construction projects. In particular, the gravity discharge of fine particles from a silo constitutes an important problem of research, because of its many industrial applications. However, the physical mechanism of this system remains unclear. In this work, we study the discharge of silo from the bottom or lateral orifice, by performing pseudo-three-dimensional (3D) continuum simulations based on the local constitutive theory. The simulation is two-dimensional (2D), in order to study the 3D silo, we add the lateral frictional force in the averaged momentum equation. For a rectangular silo with an orifice of height <inline-formula><tex-math id="M13">\begin{document}$D$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20182205_M13.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20182205_M13.png"/></alternatives></inline-formula> and the silo thickness <inline-formula><tex-math id="M14">\begin{document}$W$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20182205_M14.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20182205_M14.png"/></alternatives></inline-formula>, we study the influence of the orifice size (<inline-formula><tex-math id="M15">\begin{document}$W$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20182205_M15.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20182205_M15.png"/></alternatives></inline-formula> and <inline-formula><tex-math id="M16">\begin{document}$D$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20182205_M16.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20182205_M16.png"/></alternatives></inline-formula>) on the granular pressure and velocity. The force analysis and simulation results reveal that for the relation between the granular pressure and the orifice size, there exist two regimes: when <inline-formula><tex-math id="M17">\begin{document}$D/W$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20182205_M17.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20182205_M17.png"/></alternatives></inline-formula> is small enough, the pressure near the orifice varies only with <inline-formula><tex-math id="M18">\begin{document}$D$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20182205_M18.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20182205_M18.png"/></alternatives></inline-formula>; when <inline-formula><tex-math id="M19">\begin{document}$D/W$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20182205_M19.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20182205_M19.png"/></alternatives></inline-formula> is large enough, the pressure varies only with <inline-formula><tex-math id="M20">\begin{document}$W$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20182205_M20.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20182205_M20.png"/></alternatives></inline-formula>. These scaling laws are the same for both bottom and lateral orifice. Somewhat surprisingly, the simulation results also show that when the orifice is at the bottom, the scaling law of the vertical velocity is different from that of the pressure; when it is on the lateral side, the scaling law of the horizontal velocity is consistent with that of the pressure. This observation contradicts a hypothesis that the flow rate of discharge is controlled by the granular pressure near the orifice, and validates the recent experimental results reported in the literature. Furthermore, the relationship between the vertical velocity and the orifice size reveals that when the orifice is at the bottom, the critical value of <inline-formula><tex-math id="M21">\begin{document}$D/W$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20182205_M21.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20182205_M21.png"/></alternatives></inline-formula> for the transition of regime is much larger than the lateral orifice case, the flow rate will depend only on <inline-formula><tex-math id="M22">\begin{document}$W$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20182205_M22.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20182205_M22.png"/></alternatives></inline-formula> when <inline-formula><tex-math id="M23">\begin{document}$D/W\gg50$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20182205_M23.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20182205_M23.png"/></alternatives></inline-formula>. This condition is hardly satisfied in practice, so the new scaling law has not yet been observed for the bottom orifice case in the literature. Furthermore, this work demonstrates that the stagnant zone has an important effect on the discharge of silo, especially for the lateral orifice case. Since a non-local constitutive law can well describe the quasi-static flow, it will be interesting to modify the local constitutive model into a non-local constitutive model, and to compare the results from the two models.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference24 articles.

1. Andreotti B, Forterre Y, Pouliquen O 2013 Granular Media: Between Fluid and Solid (Cambridge: Cambridge University Press) p1

2. Lu K Q, Liu J X 2004 Physics 33 629
陆坤权, 刘寄星 2004 物理 33 629

3. Radjai F, Dubois F 2011 Discrete-element Modeling of Granular Materials (London: Wiley-Iste) p425

4. Midi G D R 2004 Eur. Phys. J. E 14 341

5. Jop P, Forterre Y, Pouliquen O 2006 Nature 441 727

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3