Empirical study of knowledge network based on complex network theory

Author:

Ding Lian-Hong,Sun Bin,Shi Peng, ,

Abstract

Knowledge graph is a hot topic in artificial intelligence area and has been widely adopted in intelligent search and question-and-answer system. Knowledge graph can be regarded as a complex network system and analyzed by complex network theory, which studies the interaction or relationship between various factors and basic characteristics of complex system. Its characteristics and their physical meanings are very helpful in understanding the nature of the knowledge graph. Concept graph is a large-scaled knowledge graph published by Microsoft. In this paper, we construct a huge complex network according to Microsoft’s concept graph. Its complex network characteristics, such as degree distribution, average shortest distance, clustering coefficient and degree correlation, are calculated and analyzed. The concept graph is not a connected network and its scale is very large; an approach is proposed to extract its largest connected subnet. The method has obvious advantages in both time complexity and space complexity. In this paper, we also present a method of calculating the approximate average shortest path of the largest connected subnet. The method estimates the maximum and minimum value of the shortest distance between nodes according to the distance between the central node and the network layer that the node belongs to and the distance between different layers. In order to calculate the clustering coefficient, different methods are introduced for nodes with different degree values and Map/Reduce idea is adopted to reduce the time cost. The experimental results show that the largest subnet of the concept graph is an ultra-small world network with the characteristics of scale-free. The average shortest path length decreases towards 4 with the network size increasing, which can be easily explained by the diamond-shaped network structure. The concept graph is a disassortative network where low degree nodes tend to connect to high degree nodes. The subConcepts account for 99.5% of nodes in the innermost <i>k</i>-core after <i>k</i>-shell decomposition. It shows that the subConcepts play an important role in the connectivity of network. The absence of subConcept affects the complexness of concept graph most, the concept next, and the instance least. The 82% instance nodes and 40% concept nodes of the concept graph each have a degree value of 1. It is believed that compared with the concept words, the instance words do not lead to the ambiguity in the understanding of natural language, caused by polysemy.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference35 articles.

1. Wang Z Y, Wang H X, Wen J R, Xiao Y H 2015 ACM International Conference on Information and Knowledge Management Melbourne, Australia, October 18−23, 2015 p653

2. Hagberg A A, Schult D A, Swart P J 2008Proceedings of the 7th Python in Science Conference Pasadena, CA USA, August 19–24, 2008 p11

3. Watts D J, Strogatz S H 1998 Nature 393 440

4. Barabási A L, Albert R 1999 Science 286 509

5. Liu Z H, Zeng Y, Wu H L, Ma J F 2014 Journal of Computer Research and Development 51 2788
刘志宏, 曾勇, 吴宏亮, 马建峰 2014 计算机研究与发展 51 2788

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3