Mixing enhancement for supersonic mixing layer by using plasma synthetic jet

Author:

Wang Peng,Shen Chi-Bing,

Abstract

Mixing enhancement for supersonic mixing layer is of great importance for developing scramjet engine. The growth rate of supersonic mixing layer is smaller than that of subsonic mixing layer. As the compressibility increases, the mixing enhancement becomes more difficult. Plasma synthetic jet is regarded as a promising flow control technology. The plasma synthetic jet generator can produce high energy jet. This generator has no moving parts and does not need additional gas source. It is the first time that plasma synthetic jet has been used to enhance the mixing in supersonic mixing layers. The influence of plasma synthetic jet on the supersonic mixing layer is investigated experimentally and numerically. The experiments are conducted in the low noise supersonic mixing layer wind tunnel. The Mach number of upper stream and lower stream are 1.37 and 2.39 respectively. The convective Mach number of this wind tunnel is 0.32. The plasma synthetic jet actuators are installed in the splitter plate. The distance between the jet hole and the splitter plate end is 15 mm. The nanoparticle-based planar laser scattering (NPLS), particle image velocimetry (PIV) and schlieren are used to obtain the response of the supersonic mixing layer to single pulse plasma synthetic jet perturbation. The NPLS successfully captures the large-scaled vortex structures induced by the plasma synthetic jet in the supersonic mixing layers. The effect of plasma synthetic jet is remarkable. The schlieren images show the process of the perturbation. An oblique shock wave is generated when the jet is ejected. The PIV is employed to obtain the influence of plasma synthetic jet on the velocity field. The <i>y</i>-velocity standard deviation increases due to the perturbation. The actuators’ mixing enhancement effects and actuators’ performances at three locations are investigated by two-dimensional numerical simulation. The three actuators are located on the upper, bottom and end surface of splitter plate respectively. The numerical simulation results show that the mixing layer thickness is increased by the plasma synthetic jet perturbation. There are two mechanisms of perturbations while actuators are located at different positions. The actuators installed on the upper and bottom surface of splitter plate influence the mixing layer through perturbing the upper and lower stream respectively. The actuator installed at the end of splitter plate affects the mixing layer directly. The response time of supersonic mixing layers to the perturbation of the actuator installed at the end of splitter plate is shorter than those of the others. The performance of each actuator is sensitive to the location.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference32 articles.

1. Zang A, Tempel T, Yu K, Buckley S 2005 43rd AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, 10−13 January, 2005 p1423

2. Gutmark E J, Schadow C S, Yu K H 1995 Annu. Rev. Fluid Mech. 27 375

3. Zhang C X, Liu Y, Fu B S, Yu X J 2018 Acta Astronaut. 153 50

4. Haimovitch Y, Gartenberg E, Roberts J A, Northam G 1994 30th Joint Propulsion Conference and Exhibit Indianapolis, IN, 27−29 June, 1994 p2940

5. Guirguis R, Grinstein F, Young T, Oran E, Kailasanath K 1987 25th AIAA Aerospace Sciences Meeting Reno, Nevada, 12−15 January, 1987 p0373

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3