Mechanism of contrast-enhancement in ultrasound-modulated laser feedback imaging with ultrasonicmicrobubble contrast agent

Author:

Zhou Bo-Rui,Tan Yi-Dong,Shen Xue-Ju,Zhu Kai-Yi,Bao Li-Ping, , ,

Abstract

Ultrasound-modulated optical imaging technology is a new type of biological tissue optical detection technology, and sensitive to the change of scattering coefficient and absorption coefficient of biological tissue. This technology is a non-ionizing and non-invasive pathological detection method, which has great potential application in early detection of cancer. However, ultrasound-modulated optical imaging technology is insufficient in signal-to-noise ratio (SNR) and imaging contrast. Frequency-shifted laser feedback technology with microchip laser is a new type of highly sensitive interference technology, whose gain coefficient for weak optical signal can reach 10<sup>6</sup>. This technology can greatly improve the SNR of imaging. Combined with the high sensitive laser feedback technology, the ultrasound-modulated laser feedback technology is proposed. The SNR of this technology is better than that of the traditional ultrasound-modulated optical imaging technology. The increase in SNR can achieve greater depth of detection in biological tissue imaging, but there is no significant improvement in imaging contrast. In order to improve the contrast of biological tissue imaging and achieve high resolution imaging of thick biological tissue, we use ultrasound microbubble contrast agent in ultrasound-modulated laser feedback imaging technology. We establish a Monte Carlo photon transport model with microbubbles in order to study the mechanism of contrast enhancement in ultrasound-modulated laser feedback imaging with microbubbles. Finally, we establish an experimental system to verify the correctness of the simulation results. Experimental and simulation results show that in the transparent solution, the ultrasonic microbubble contrast agent can enhance the ultrasound-modulated laser feedback signal and generate harmonic modulation, which can improve the imaging contrast by detecting the enhancement of the fundamental and harmonic signals of the feedback. In the scattering medium, the ultrasonic microbubble contrast agent can significantly attenuate the ultrasound modulated laser feedback signal, and the imaging contrast can be improved by detecting the attenuation of the fundamental and harmonic signal.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3