Identification and tracking of different types of crystalline nucleiduring isothermal crystallization of amorphous Ag

Author:

Li Yuan,Peng Ping,

Abstract

The isothermal crystallization of amorphous Ag is investigated by a molecular dynamics (MD) simulation, and the heredity and evolution of different types of crystalline clusters aretracked and analyzed by a reverse tracking method of atom trajectories with the help of cluster-type index method (CTIM) based on Honeycutt-Anderson (H-A) bond-type index. According to the difference in the type of crystalline cluster and the linkage mode, i.e., vertex-sharing (VS), edge-sharing (ES), face-sharing (FS) and intercross-sharing (IS), a cluster analysis method which can efficiently characterize fcc single-crystal, fcc poly-crystal and fcc hydrid-crystal, is proposed. That is, the IS-linkage of fcc basic clusters, i.e., a fcc medium range order, is defined as a fcc single-crystal cluster. The extended cluster of fccbasic clusterslinked by ISand FS modes is named fcc poly-crystal clusters. In the case of IS-linkages, if the majority of core atoms arefcc atoms, the extended cluster composed of fcc, hcp and bcc basic clusters will be regarded as a fcc hydrid-crystal cluster. Moreover, a structural analysis method of critical nuclei distinguishing embryosis also developed in terms of the hereditary characteristics of various crystalline clusters. In this scheme, the extended cluster which has only transient heredity and no continuous heredity is defined as an embryo, while it will be named nuclei if part of core atoms in extended clusters can keep cluster type of atoms unchanged and be continuously passed down in the early stage of crystallization. Thus, corresponding to the onset time/temperature of continuous heredity, the critical nuclei of fcc singe-crystals, fcc poly-crystals and fcc hybrid-crystals can be identified and characterized. It is found that the nuclei of fcc crystalsemerge after the steep drop of total energy of system and before the abrupt increase of sizesof tracked clusters. And regardless of critical sizes or geometric configurations, an evident difference exists among fcc singe-crystal, hybrid-crystal clusters and fcc poly-crystal clusters, of which the fcc single-crystal nucleus is the smallest (~1.6 nm ×1.0 nm × 1.1 nm), followed by poly-crystal nucleus (~1.7 nm × 1.0 nm × 1.6 nm) and hydrid-crystal nucleus (~2.3 nm × 2.0 nm × 2.4 nm) in sequence. There are a few hcp and bcc atoms at surfaces, i.e. shells, of single-crystal and poly-crystal nucleus, but neither hcp nor bcc atom can be detected at the shell of fcc hydrid-crystal nucleus. And theconfiguration of fcc single-crystal, poly-crystal and hydrid-crystal critical nuclei are all non-spherical.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3