Fabrication and photovoltaic performance of counter electrode of 3D porous carbon composite

Author:

Chen Zhuo ,Fang Lei ,Chen Yuan-Fu , ,

Abstract

Dye-sensitized solar cell (DSSC) has been widely investigated due to its low cost, simple fabrication process, and excellent photoelectric conversion efficiency. Generally, the DSSC is composed of photoanode, electrolyte and counter electrode. At present, platinum (Pt) film delivers the highest photoelectric conversion efficiency in the available counter electrode materials. However, Pt film is very expensive and prepared by relatively complicated and high-cost magnetron sputtering, which seriously hinders the large-scale applications in DSSC. Therefore, it is of highly academic and engineering significance to develop novel counter electrode materials with low cost and high photoelectric conversion efficiency to replace expensive Pt counter electrode. Previous research shows that carbon-based nanomaterials such as graphene and carbon nanotubes ard promising to be used as highly efficient counter electrode materials. However, the high-cost and complicated fabrication process restrict their practical applications in DSSC. To address such issues, here in this work, we present and fabricate a highly efficient and low-cost three-dimensional porous carbon composite, which is constructed by the relatively dense and conductive graphite film as bottom layer (PC layer), and the porous carbon nanoparticle film as top layer (CC layer). Our fabricated DSSC consists of commercial TiO<sub>2</sub> photoanode (m 4 mm×4 mm), and PC, CC, CC/PC composite, or Pt counter electrode with a size of m 8 mm×8 mm. The results show that under illumination (100 mW/cm<sup>2</sup>) provided by a solar simulator, the short circuit current densities (open circuit voltages) of DSSCs with PC, CC, CC/PC, and Pt counter electrodes are 11.45 mA/cm<sup>2</sup> (0.72 V), 11.88 mA/cm<sup>2</sup> (0.73 V), 12.00 mA/cm<sup>2</sup> (0.75 V), and 13.46 mA/cm<sup>2</sup> (0.74 V), respectively. The filling factors of DSSCs with PC, CC, and CC/PC are 56.09%, 59.80%, 65.28%, and 62.69%, respectively; the photoelectric conversion efficiencies of DSSCs with PC, CC, and CC/PC are 4.61%, 5.20%, 5.90%, and 6.26%, respectively. It is noted that compared with CC layer or PC layer counter electrode, the CC/PC counter electrode delivers better photovoltaic performance. Particularly, the filling factor of DSSC with CC/PC (65.28%) is even 4.10% higher than that of DSSC with commercial Pt (62.69%), and the photoelectric conversion efficiency of the CC/PC-based DSSC is as large as 5.90%, which reaches 94.2% of the Pt-based DSSC (6.26%). The excellent performance of DSSC with CC/PC counter electrode is attributed to the unique three-dimensional porous structure, which can not only facilitate the transfer of electrons and ions, but also provide abundant catalytic sites; these synergistic effects greatly enhance the photovoltaic conversion performance of CC/PC-based DSSC.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3