Abstract
In this paper, some general variational principles in the theory of elasticity and the theory of plasticity are established. Consider an elastic body in equilibrium with small displacement. By regarding u, v, w, ex, ey, ez, yyz, yxz, yxy, σx,σy, σz,τyz,τxz,τxy as fifteen independent functions, and letting their variations be free from any restriction, we establish two variational principles, called the principle of generalized complementary energy and the principle of generalized potential energy. Each principle is equivalent to the four sets o?fundamental equations of the theory of elasticity, namely, the equations of equilibrium, the stress strain relations, the strain displacement relations and the appropriate boundary conditions. Special cases of these principles are examined. These principles are next expressed in other forms, where u, v, w, σx,σy, σz,τyz,τxz,τxy are regarded as nine independent functions with their variations free from any restrictions. Next we consider the bending of a thin elastic plate with supported edges under large deflection. By regarding Mx, My, Mxy, Nx, Ny, Nxy, u, v, w as nine independent functions with the restriction that w should vanish along the contour of the plate, we establish a variational principle, called the principle of generalized potential energy, which is equivalent to the three sets of fundamental equations in the theory of bending of thin plate, namely, the equations of equilibrium, the displacement stress relations (strain stress relations) and the appropriate boundary conditions. This principle is next expressed in another form which is more convenient for application. As an illustration, von Kármán's equations for the large deflection of thin plate are derived from this principle. In von Kármán's equations, one unknown is the deflection and the other unknown is the membrane stress function. Therefore it is impossible to derive von Karman's equations either from the principle of minimum potential energy or from the principle of complementary energy. Finally we consider the equilibrium of a plastic body with small displacement. In the case of the deformation type of stress strain relations, we establish two variational principles, each of which is equivalent to the equations of equilibrium, a certain type of stress strain relations and the appropriate boundary conditions. In these variational principles, u, v, w and their variations are free from any restriction, and σx,σy, σz,τyz,τxz,τxy and their variations satisfy a certain yield condition. In the case of the flow type of stress strain relations, we get two similar variational principles, in which u, v, w and their variations are free from any restriction, σx,σy, σz, τyz,τxz,τxy and their variations satisfy a certain yield condition and σx,σy, σz, τyz,τxz,τxy have no variations.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy