ON SOME VARIATIONAL PRINCIPLES IN THE THEORY OF ELASTICITY AND THE THEORY OF PLASTICITY

Author:

HU HAI-CHANG ,

Abstract

In this paper, some general variational principles in the theory of elasticity and the theory of plasticity are established. Consider an elastic body in equilibrium with small displacement. By regarding u, v, w, ex, ey, ez, yyz, yxz, yxy, σx,σy, σz,τyz,τxz,τxy as fifteen independent functions, and letting their variations be free from any restriction, we establish two variational principles, called the principle of generalized complementary energy and the principle of generalized potential energy. Each principle is equivalent to the four sets o?fundamental equations of the theory of elasticity, namely, the equations of equilibrium, the stress strain relations, the strain displacement relations and the appropriate boundary conditions. Special cases of these principles are examined. These principles are next expressed in other forms, where u, v, w, σx,σy, σz,τyz,τxz,τxy are regarded as nine independent functions with their variations free from any restrictions. Next we consider the bending of a thin elastic plate with supported edges under large deflection. By regarding Mx, My, Mxy, Nx, Ny, Nxy, u, v, w as nine independent functions with the restriction that w should vanish along the contour of the plate, we establish a variational principle, called the principle of generalized potential energy, which is equivalent to the three sets of fundamental equations in the theory of bending of thin plate, namely, the equations of equilibrium, the displacement stress relations (strain stress relations) and the appropriate boundary conditions. This principle is next expressed in another form which is more convenient for application. As an illustration, von Kármán's equations for the large deflection of thin plate are derived from this principle. In von Kármán's equations, one unknown is the deflection and the other unknown is the membrane stress function. Therefore it is impossible to derive von Karman's equations either from the principle of minimum potential energy or from the principle of complementary energy. Finally we consider the equilibrium of a plastic body with small displacement. In the case of the deformation type of stress strain relations, we establish two variational principles, each of which is equivalent to the equations of equilibrium, a certain type of stress strain relations and the appropriate boundary conditions. In these variational principles, u, v, w and their variations are free from any restriction, and σx,σy, σz,τyz,τxz,τxy and their variations satisfy a certain yield condition. In the case of the flow type of stress strain relations, we get two similar variational principles, in which u, v, w and their variations are free from any restriction, σx,σy, σz, τyz,τxz,τxy and their variations satisfy a certain yield condition and σx,σy, σz, τyz,τxz,τxy have no variations.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference1 articles.

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3