Softening of sound velocity and Hugoniot parameter measurement for shocked bismuth in the solid-liquid mixing pressure zone

Author:

Li Xue-Mei ,Yu Yu-Ying ,Tan Ye ,Hu Chang-Ming ,Zhang Zu-Gen ,Lan Qiang ,Fu Qiu-Wei ,Jing Hai-Hua ,

Abstract

Polymorphic phase transformation and melting under shock wave loading are important for studying the material dynamic mechanical behavior and equation of state in condensed matter physics. In this paper, the accurate Hugoniot parameter and sound velocity of shocked pure bismuth (Bi) in a pressure range of 17.3-28.3 GPa are obtained by using flyer impact method and rarefaction overtaking technique, respectively, and the sound velocity softening trend in shock-induced melting zone and the melting kinetics of Bi are then analyzed. In each experiment, six Bi samples with different thickness values are affected by oxygen-free-high-conducticity copper flyer fired through power gun. Shock wave velocity and particle velocity in Bi are experimentally determined through measuring the impact velocity and shock wave time in the thickest sample by photon Doppler velocimetry (PDV) technique. The velocity profiles on each interface between Bi and lithium fluoride (LiF) window are measured by displacement interferometer system of any reflector (DISAR), and then the sound velocity of shocked Bi is determined using the rarefaction overtaking method. The analyses of our results show that the softening of sound velocity of Bi approximatively satisfies the linear relation of Cs=3.682-0.015 p in the solid-liquid coexistence zone, and the pressure zone of the solid-liquid coexistence phase is further affirmed to be in a range of 18-27.4 GPa. Additionally, the obtained Hugoniot data for Bi in this paper supply a gap in the pressure zone of solid-liquid mixing phase. The quadratic equation with the expression of Ds=0.401+ 3.879 up-0.876 up2 can better demonstrate the relation between shock wave velocity and particle velocity than a linear one when the particle velocity lies in a range of 0.5-1.0 km/s, and this non-linear property maybe has a relationship with the shock-induced melting of Bi. Finally, our wave profile measurement of the Bi/LiF interface shows peculiar ramp characteristics in the expected velocity plateau zone in the pressure zone of solid-liquid coexistence phase, which may be associated with both the nonhomogeneous melting kinetics and the long time scale of melting for bismuth.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3