Fundamental circuit element and nonvolatile memory based on magnetoelectric effect

Author:

Shen Jian-Xin ,Shang Da-Shan ,Sun Young , ,

Abstract

The magnetoelectric coupling effect in materials provides an additional degree of freedom of physical states for information storage and shows great potential in developing a new generation of memory devices. We use an alternative concept of nonvolatile memory based on a type of nonlinear magnetoelectric effects showing a butterfly-shaped hysteresis loop. The state of magnetoelectric coefficient, instead of magnetization, electric polarization, or resistance, is utilized to store information. Because this memory concept depends on the relationship between the charge and magnetic flux, it is actually the fourth fundamental circuit memory element in addition to memristor, memcapacitor, and meminductor, and is defined as memtranstor. Our experiments in memtranstor comprised of the[Pb(Mg1/3Nb2/3)]0.7[PbTiO3]0.3(PMN-PT)/Terfenol-D and Ni/PMN-PT/Ni multiferroic heterostructures clearly demonstrated that the magnetoelectric coefficient can be repeatedly switched not only between positive and negative polarities but also between multilevel states by applying electric fields, confirming the feasibility of this principle. In addition to nonvolatile memory, the nonvolatile logic functions, such as NOR and NAND and synaptic plasticity functions, such as long-term potentiation/depression and spiking-time-dependent plasticity are implemented in a single memtranstor by engineering the applied electric-field pulses. The combined functionalities of memory, logic, and synaptic plasticity enable the memtranstor to serve as a promising candidate for future computing systems beyond von Neumann architecture.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3