Recent progress of fluorescence lifetime imaging microscopy technology and its application

Author:

Liu Xiong-Bo ,Lin Dan-Ying ,Wu Qian-Qian ,Yan Wei ,Luo Teng ,Yang Zhi-Gang ,Qu Jun-Le ,

Abstract

In the past decade, fluorescence lifetime imaging microscopy (FLIM) has been widely used in biomedical research and other fields. As the fluorescence lifetime is unaffected by probe concentration, excitation intensity and photobleaching, the FLIM has the advantages of high specificity, high sensitivity and capability of quantitative measurement in monitoring microenvironment changes and reflecting the intermolecular interactions. Despite decades of technical development, the FLIM technology still faces some challenges in practical applications. For example, its resolution is still difficult to overcome the diffraction limit and the trade-off among imaging speed, image quality and lifetime accuracy needs to be considered. In recent years, a great advance in FLIM and its application has been made due to the rapid development of hardware and software and their integration with other optical technologies. In this review, we first introduce the principle and characteristics of FLIM technology based on time domain and frequency domain. We then summarize the latest progress of FLIM technology:1) imaging speed enhancement based on hardware improvement such as optimized time-correlated single photon counting module, single photon avalanche diode array detector, and acousto-optic deflector scanner; 2) lifetime measurement accuracy improvement by the proposed algorithms such as maximum likelihood estimate, Bayesian analysis and compressed sensing; 3) imaging quality enhancement and spatial resolution improvement by integrating FLIM with other optical technologies such as adaptive optics for correcting the aberration generated in the optical path, special illumination for equipping wide-field FLIM with optical sectioning ability, and super-resolution techniques for exceeding the resolution limit. We then highlight some recent applications in biomedical studies such as signal transduction or plant cell growth, disease diagnosis and treatment in cancers, Alzheimer's disease and skin diseases, assessment for toxicity and treatment efficiency of nanomaterials developed in the past few years. Finally, we present a short discussion on the current challenges and provide an outlook of the future development of enhanced imaging performance for FLIM technology. We hope that our summary on the state-of-the-art FLIM, our commentary on future challenges, and some proposed avenues for further advances will contribute to the development of FLIM technology and its applications in relevant fields.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3