Observation of hydrodynamic phenomena of plasma interaction in hohlraums

Author:

Li Hang ,Yang Dong ,Li San-Wei ,Kuang Long-Yu ,Li Li-Ling ,Yuan Zheng ,Zhang Hai-Ying ,Yu Rui-Zhen ,Yang Zhi-Wen ,Chen Tao ,Cao Zhu-Rong ,Pu Yu-Dong ,Miao Wen-Yong ,Wang Feng ,Yang Jia-Min ,Jiang Shao-En ,Ding Yong-Kun ,Hu Guang-Yue ,Zheng Jian , ,

Abstract

In indirect-drive inertial confinement fusion (ICF), laser beams are injected into a high-Z hohlraum and the laser energy is converted into intense X-ray radiation, which ablates a capsule located in the center of the hohlraum, and thus making it implode. To achieve high implosion efficiency, it is required that the hohlraum inner wall plasma movement, which will block further laser injection through the laser entrance hole (LEH), be suppressed. Evolution of hohlraum radiation nonuniformity caused by the plasma movement will result in implosion asymmetry which will prevent the ignition from happening. Therefore it is very important to study the hydrodynamic movement of high-Z plasma in ICF experiment.<br/>In ICF hohlraum, various plasmas of laser spots, corona, radiation ablation and jets move in different ways driven by laser ablation and X-ray radiation ablation, which is hard to observe and study. An X-ray dual spectral band time-resolved imaging method is developed to clearly observe the motion of various plasmas in hohlraum. Based on the time-resolved X-ray framing camera, using the typical gold plasma emission spectrum, the gold microstrip MCP response spectrum, and the 1.5 μm Al or 3 μm Ti filter transmittance spectrum, the two narrow-band X-ray peaks at 0.8 keV and 2.5 keV are highlighted. The 0.8 keV X-ray shows the Planck spectrum of gold plasma, and 2.5 keV X-ray indicates the M-band of gold plasma.<br/>In the vacuum hohlraum, jets are observed clearly, which are verified to be 4 times the sound speed experimentally. The generation mechanism of gold plasma jets in the ICF hohlraum is mainly due to collision rather than magnetic field, because it is estimated that thermal pressure is much bigger than magnetic pressure. In the gas-filled hohlraum, low-Z C<sub>5</sub>H<sub>12</sub> gas can effectively eliminate high-Z gold jets and suppress the high-Z gold coronal plasma movement. The interface between the low-Z and high-Z substance is observed clearly, and gold plasma is accumulated obviously in the later period at the interface. Moreover, spike and filamentous structure occur at the interface between the two substances, which is probably caused by the hydrodynamic instability. The 0.8 keV rather than 2.5 keV X-ray is observed around inner wall, which originates from the low-temperature plasma driven by radiation ablation and is predicted by simulation code. Furthermore, the pressure balance between the two substances and the density steepness at the interface are also analyzed.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3