Geometric quantum discord in Tavis-Cummings model

Author:

Cheng Jing ,Shan Chuan-Jia ,Liu Ji-Bing ,Huang Yan-Xia ,Liu Tang-Kun ,

Abstract

Quantum entanglement plays a key role in quantum information and quantum computation and thus attracts much attention in many branches of physics both in theory and in experiment. But recent studies revealed that some separable states (non-entangled state) may speed up certain tasks over their classical counterparts and may also possess certain kinds of quantum correlations. For example, geometric quantum discord, which is a more general quantum correlation measure than entanglement, can be nonzero for some separable states. From a practical point of view, it is proposed that the geometric quantum discord be responsible for the power of many quantum information processing tasks. In order to capture such correlations, Ollivier and Zurek introduced quantum discord, which measures the discrepancy between two natural yet different quantum analogues of two classically equivalent expressions of mutual information. However, the calculation of quantum discord is based on numerical maximization procedure, and there are few analytical expressions even for a two-qubit state. In order to obtain the analytical results of quantum discord, a geometric measure of quantum discord which measures the quantum correlations through the minimum Hilbert-Schmidt distance between the given state and zero discord state is introduced. Geometric quantum discord is defined as an effective measure of quantum correlation, and the geometric quantum discord through the minimal distance between the quantum state and the set of zero-discord states in a bipartite quantum system can be worked out. In this paper, by using the geometric quantum discord measurement method, the geometric quantum discord in Tavis-Cummings model is investigated, and the influences of the initial state purity, entanglement degree, dipole-dipole coupling intensity between two atoms, and field in the Fock state on the evolution characteristic of geometric quantum discord are analyzed. The results show that the geometric quantum discord appears periodically. It initially decreases to a minimum value, and then turns out to be increased for different initial states. The rigorous analysis and numerical results reveal that when we take a suitable initial state, the geometric quantum discord of two atoms can be kept in correlation. When the atoms are in the different initial states, the quantum properties of the system are significant. The photon number of the field can lead the quantum discord to be weakened. Geometric quantum discord can be increased by increasing the cavity photon number and the dipole-dipole coupling intensity. Geometric quantum discord can be enhanced obviously by increasing the strength of the dipole-dipole coupling interaction. The conclusions may conduce to the understanding of quantum correlation for the other systems from the view of geometric quantum discord.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3