Influence of background gas on two-dimensional metal evaporation

Author:

Lu Xiao-Yong ,Zhang Xiao-Zhang ,

Abstract

The spatial distributions of macroscopic parameters such as density, bulk velocity and temperature of the metal vapor have influences on the photo ionization yield of target isotope and the utilization ratio of material, which is related to the separation efficiency and the cost of atomic vapor laser isotope separation. To study this problem more practically, a system of binary gas Bhatnagar-Gross-Krook (BGK) model equations, which describe both the metal vapor and the background gas, is established. The physical characteristics are dealt with by dimensionless method for simplifying the calculations. The model equations are discretized by one-order upwind difference and then are solved by iteration method for obtaining stable results. The computational grids are adjusted to the flow field in order to acquire modest computational cost and accurate result simultaneously. Non-uniform grids in the phase space and in the velocity space are constructed to match the macroscopic parameter gradient and the form of the velocity distribution, respectively. The macroscopic parameters in the cases of different background gas densities, temperatures of tail plate and absorptivities are obtained for studying the influence of the background gas. The results show that with the increase of density of the background gas, the density and temperature of the metal vapor increase, the bulk velocities in the x and z$ direction decrease obviously in the domain far from the evaporation source, while the macroscopic parameters that are close to the evaporation source hardly change. As a result, the evaporation rate is not affected. Meanwhile, a circulation of the background gas is driven by the metal vapor, which in turn affects the diffusion of the metal vapor. Besides, as the temperature of tailing plate rises, the influence of the background gas on the macroscopic parameters of the metal vapor weakens. However, the rise of the temperature of tail plate leads the absorptivity of metal vapor to decrease, which enlarges the influence of the background gas. Therefore, it is appropriate to adjust the temperature of the tail plate based on the relationship between the absorptivity of metal vapor and the temperature. The results of theoretical calculation can serve as a reference for designing the vacuum and laser spot of the separation device.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference21 articles.

1. Waichman K 1996 Phys. Fluids 8 1321

2. Wang D W 1999 Theory and Application of Laser Isotope Separation (Beijing: Atomic Energy Press) pp382-390 (in Chinese) [王德武 1999 激光分离同位素理论及其应用 (北京: 原子能出版社) 第382390页]

3. Xiao J X, Wang D W 1999 J. Tsinghua Univ. (Sci. Tech.) 39 52 (in Chinese) [肖踞雄, 王德武 1999 清华大学学报(自然科学版) 39 52]

4. Xiao J X, Wang D W 2000 Atom. Energ. Sci. Tech. 34 244 (in Chinese) [肖踞雄, 王德武 2000 原子能科学技术 34 244]

5. Graur I, Polikarpov A P, Sharipov F 2011 Comput. Fluids 49 87

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3