Disintegration, functionalization and drug-delivery application of nanodiamond

Author:

Qin Shi-Rong ,Zhao Qi ,Cheng Zhen-Guo ,Su Li-Xia ,Shan Chong-Xin , ,

Abstract

In recent years, with the rapid development of nanomedicine, the nanomaterials for bio-medical applications have received much attention. Although there are a variety of nanomaterials such as lipid, carbon nanotube, etc. that have been studied as drug carrier, they are restricted by the potential toxicity and high cost of production. So, it is necessary to find a good alternative for the future drug delivery applications. Detonation nanodiamond, as an important carbon nanomaterial, possesses many excellent properties such as facile functionalization, large specific surface area, low toxicity and high chemical stability and so on, which make them advantageous in bio-medical applications over many other nanomaterials. In this work, the carboxyl functionalized and well-dispersed nanodiamond (ND-COOH) is obtained through disintegration and chemical modification, and then the functionalized nanodiamond is characterized by transmission electron microscope, X-ray diffraction, Fourier transform infrared spectroscopy, etc. to analyze its morphology and structure and the toxicity. Besides, the drug loading and release properties are also examined. The ND-COOH exhibits high zeta potential in aqueous solution, which enables them adsorb doxorubicin (dox) molecules onto the surface through electrostatic interaction, and the maximal loading reaches to 325 μg/mg, which is higher than most of reported results. It is because the bond between dox and ND-COOH origins from the electrostatic attraction between negatively charged-COO- on the ND and positively charged–NH3 in the dox. So, when the drug compounds are dispersed into low pH environment, the high H+ concentration would promote the transformation of –COO- into –COOH, which would weaken the electrostatic attraction between ND and dox and hence accelerate the drug release. This leads a drug release to reach 85% in pH 5.0 PBS and less than 40% in pH 7.4 PBS, exhibiting interesting pH-responsive drug release behavior. Finally, the toxicity and in vitro cancer cell killing results of ND-COOH and ND-dox preliminarily show that in the concentration range from 0 to 150 μg/mL, the functionalized ND-COOH does not inhibit the viability of SGC-7901 cells, exhibiting low toxicity. In contrast, the ND-dox shows obvious cytotoxicity towards SGC-7901 cells by strongly inhibiting their viability to lower than 40% in 150 μg/mL group. This work details and systematically discusses the disintegration, functionalization, drug loading and release properties of ND, which would be significant in promoting the biomedical application of ND.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3