Motor imagery based on adaptive parameterless empirical wavelet transform and selective integrated classification

Author:

He Qun ,Wang Yu-Wen ,Du Shuo ,Chen Xiao-Ling ,Xie Ping ,

Abstract

Improving recognition rate of motor imagery (MI)-related electroencephalography (EEG) is of great importance for numerous brain computer interface (BCI) applications. However, the performance of a typical BCI system greatly relies on the effectiveness of the extracted features from raw EEG signals and the ability of the classifier to correctly identify different MI patterns. Therefore, in this paper, a new recognition method based on adaptive parameterless empirical wavelet transform (APEWT) and selective integrated classification model is proposed to enhance the classification accuracy of MI-related EEG signal. First, the APEWT is used to decompose EEG signals from different MI patterns into several intrinsic mode functions (IMFs), each of which contains different rhythm information over different frequency bands. Then several related modes are optimally selected based on the correlation coefficients calculated between each IMF component and the original signal to reconstruct EEG signals. Next, in order to further extract useful pattern information from both the time domain and frequency domain, the energy spectrum features of multiple time segments from the reconstructed signals and marginal spectrum features of different frequency bands corresponding to those selected modes are investigated, respectively. Finally, the extracted multiple features from time domain and frequency domain are input into the selective integrated classification model to build an MI recognition system. The selective integrated classification model consists of several extreme learning machines (ELMs) as the basic classifiers, different weights are assigned, respectively, to ELM basic classifiers based on their corresponding classification performances, and several basic ELM classifiers with good performances are selected to construct the final integrated model. The proposed method is evaluated on two public datasets, including BCI Competition Ⅱ dataset Ⅲ and BCI Competition IV dataset 2 b, and is compared with four different combination methods where different features in time domain or frequency domain in the feature extraction stage and different ELMs based classification models are considered. Experimental results demonstrate that the proposed method outperformed four combination methods and the existing methods recently reported in the literature using the same datasets in terms of classification accuracy and area under the ROC curve receiver operating characteristic metric. Specifically, our proposed method achieves the highest average classification accuracy (89.95%) in the compared methods, which indicates its better classification performance and generalization capability. In addition, the proposed method exhibits high computational efficiency, thus providing a new solution for online recognition of MI-related BCI and having the potential to be embedded in a practical system for controlling an external device.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on Motor Imagery States Discriminating Based on CLMD and CNN;2021 3rd International Conference on Artificial Intelligence and Advanced Manufacture;2021-10-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3