Progresses of ultrastable optical-cavity-based microwave source

Author:

Jiang Hai-Feng , ,

Abstract

With the progress of science and technology and the continuous improvement of the precision measurement application technology, the technical requirements for the stability and noise level of the ultra-stable microwave source are increasing. Its application range becomes more and more wide, including high performance frequency standard research, network radar development, deep space navigation system, etc. Up to now, the photonic microwave generators based on ultra-stable laser and femtosecond light comb are believed to be the highest microwave frequency source with the highest frequency stability and the relative frequency stability 10-16 in 1 s. This device is also the basis of the application for the next frequency standard (optical frequency standard). Whether the generation of time or most of the precision measurements, the output laser of the optical frequency standard should be transformed into a super stable baseband frequency signal. In this paper, we first introduce the development, current situation and application requirements of ultra-stable photonic microwave source, then we present the principle and structure of the ultra-stable photonic microwave source and the technical development of its components based on the first set of domestic-made ultra-stable microwave frequency sources developed by the National Time Service Center. For the ultra-stable laser, we mainly focus on the research and development of the ultra-stable cavity design, the Pound-Drever-Hall frequency locking technology, and the residual amplitude noise effect rejection. For the optical frequency combs, we mainly focus on the development of laser mode-locking and frequency control technology based on erbium-doped fiber combing system. For the low noise photonic-to-microwave detection and low noise synthesizer techniques, the noise effect rejection of wideband photoelectric detection and the microwave phase noise induced by the amplitude noise of the laser are emphatically introduced. Finally, we summarize and prospect the photonic ultra-stable microwave generation technique.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3