Multipactor in parallel-plate transmission line partially filled with dielectric material

Author:

Zhai Yong-Gui ,Wang Rui ,Wang Hong-Guang ,Lin Shu ,Chen Kun ,Li Yong-Dong , ,

Abstract

Due to the poor conductivity of the dielectrics, if an electron collides with the dielectric material, a charge will be deposited on the surface as a consequence of the secondary electron emission. Thus, the multipactor process in dielectric-loaded microwave devices differs from those in metallic devices. The objective of this paper is to study the self-extinguishing physical mechanism of the multipactor in parallel-plate transmission lines partially filled with dielectric layers by particle-in-cell simulation. The self-consistent field generated by the electrons in the simulation is assumed to be neglected, since there do not exist too many electrons in the self-extinguishing process. To illustrate the self-extinguishing phenomenon in a dielectric-loaded waveguide device, the strength of electric field in the vacuum area needs to be the same as that in a metallic device. When the input power is slightly higher than the multipactor threshold, the self-extinguishing phenomenon occurs after the initial electron multiplication while the number of electrons increases exponentially with the simulation duration in metallic device. Based on this fact, the physical mechanism of self-extinguishing phenomenon is investigated in detail. By analyzing the temporal evolution of the electrons and the average secondary electron yield (SEY), it can be concluded that the self-extinguishing phenomenon is caused by the electrostatic field generated by the charges deposited on the surface of the dielectric. Moreover, the average SEY of the dielectric tends to be one or greater than one when the number of electrons drops to nearly zero. Hence, it is necessary to further analyze the ability to continue accumulating charges on the dielectric surface when extra electrons are injected into the simulation region at the instant when the number of electrons is close to zero. For the former case, the charges deposited on the dielectric surface remain steady all along, while the charges reach to a stable state eventually as the number of injected electrons increases for the latter one. Both of them mean that the average SEY of the dielectric surface will be unity in the end. Since the electrostatic field generated by the charge deposited on the dielectric surface can reduce the risk of occurrence of multipactor, the electret material could be used in the design of the dielectric-loaded microwave devices to improve the multipactor threshold.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3