A method of calculating and analyzing wear rate of materials under fretting condition

Author:

Yang Xiao-Li ,Wang Bin-Rong ,Hu Hai-Yun ,

Abstract

Fretting phenomena exist widely in structural engineering. In recent years, it has attracted more attention from scientists and technicians. In order to study the fretting wear in depth, we establish a new method of calculating the wear rate of material in vibratory environment. Firstly, according to the characteristics of friction pair and fretting wear process in fretting friction system, the asymmetric double potential well model is proposed and the potential energy function of the model is given. The transfer of particles between the two kinds of materials during the fretting is regarded as the motion of the particles in the two potential wells which are asymmetrical, and the particle motion equation in the potential well is established. Furthermore, considering the characteristics of the randomness, time-varying and irreversibility of particle motion in fretting friction system, a theoretical model is established by using the non-equilibrium statistical theory, which is based on the particle equation motion, combined with the Langevin equation in random theory and the Foker-Planck equation in the non-equilibrium statistical theory. The probability density distribution function of particles moving from the interior of the material to the material surface at any time is obtained. A method of calculating the wear rate is proposed by integrating the probability density distribution function. Secondly, by calculating the wear rate of the friction pair which consists of metal materials Mg and Fe, we obtain the potential energy function of the asymmetric double potential well model as the different surface energies of both materials. Furthermore, the probability density distribution function of particles moving in this friction pair is calculated. Then, the change of wear rate with wear time and width of potential well is derived, and the effect of normal force on wear rate is further analyzed. The results of calculation and analysis show that the wear rate of material decreases with the decrease of the width of the potential well in the friction pair system, decreases with the increase of wear time and increases with the increase of the normal force of the load, and the surface of the relatively soft material in the friction pair system is more likely to wear off. Finally, the conclusions of the theoretical model accord with the experimental results, illustrating the applicability of the theoretical model.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference21 articles.

1. Zhou Z R, Vincent L 2002 Fretting Wear (1st Ed.) (Beijing: Science Press) pp30-32 (in Chinese) [周仲荣, Leo Vincent 2002微动磨损(第一版) (北京:科学出版社) 第3032页]

2. Hao H W, Yang M S, Sun S Q, Wang Y J, Zhang Z H 2016 Iron. Steel. 28 61 (in Chinese) [郝宏伟, 杨卯生, 孙世清, 王艳江, 张志慧 2016 钢铁研究学报 28 61]

3. Wang Z, Cai Z B, Sun Y, Wu S B, Peng J F, Zhu M H 2017 Die. Mould Ind. 37 225 (in Chinese) [王璋, 蔡振兵, 孙阳, 吴松波, 彭金方, 朱旻昊 2017 摩擦学学报 37 225]

4. Ding Y, Liang J, Deng K, Bo L, Dai Z D 2017 Chin. J. Nonferrous Met. 27 532 (in Chinese) [丁燕, 梁军, 邓凯, 柏林, 戴振东 2017 中国有色金属学报 27 532]

5. Zhang D K, Ge S R, Zhu Z C 2002 J. Chin. Univ. Min. Technol. 31 367 (in Chinese) [张德坤, 葛世荣, 朱真才 2002 中国矿业大学学报 31 367]

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3