Anomalous heat-releasing phenomenon from bubbles in aluminum induced by electron beam irradiation

Author:

Du Yu-Feng ,Cui Li-Juan ,Li Jin-Sheng ,Li Ran-Ran ,Wan Fa-Rong ,

Abstract

In the early 1990s, Japanese scholars unexpectedly observed that single crystal changes into polycrystal in deuterium-implanted aluminum under electron irradiation, but never found the same phenomenon in the hydrogen-implanted aluminum. However, previous study of our group has proved that the polycrystalline phenomenon can also be observed in hydrogen-implanted aluminum during electron irradiation. In this paper, the behavior of inert gas bubbles in aluminum under electron irradiation is investigated, aiming to further explore the effects of ion species, electron voltage and the pressure of bubbles on the anomalous heat-releasing reaction of bubbles induced by electron irradiation. In the experiment, the transmission electron microscope (TEM) samples of pure aluminum were implanted with He+, Ne+, Ar+ respectively by ion accelerator at room temperature. The TEM is used to in-situ observe and investigate the evolution of microstructure and the change of selected electron diffraction patterns of gas bubbles during electron irradiation. The results show that gas bubbles form in aluminum sample after ion implantation. During 200 keV electron irradiation TEM results show that the three kinds of inert gas bubbles all coalesce, grow up and bust separately. Finally, lots of nanoscale black dots appear inside them. At the same time, the electron diffraction patterns change from single crystal diffraction spots to polycrystalline diffraction rings. The dark field images indicate that the diffraction rings are induced by these black dots. Moreover, from the characterization of the diffraction rings, it is known that these black dots are pure aluminum rather than aluminum oxide. Therefore, the possibility that the diffraction rings result from aluminum oxide is eliminated. It is assumed that a certain kind of heat-releasing reaction should happen when the gas bubbles are irradiated by electrons, which leads to the poly-crystallization of aluminum after electron irradiation. However, while helium bubbles are irradiated by electrons with an energy of 80 keV, no diffraction ring is observed after electron irradiation. The same phenomenon as that in the case of helium bubbles irradiated by 80 keV electrons is observed. When helium and argon mixed bubbles with polygonal shape are irradiated by 200 keV electrons, no diffraction ring is observed after electron irradiation either. The reason might be related to the energy of the electron beam and the pressure of gas bubbles separately. There should be a threshold value of electron voltage for the heat-releasing reaction. In addition, the pressure of the gas bubbles is also a key factor for the heat-releasing reaction. The heat-releasing phenomenon of gas bubbles reminds us of the sonoluminescence phenomenon. By model calculation, it is predicted that there is a plasma core in the bubble during sonoluminescence. According to the hint from researches of sonoluminescence, an assumption is made to explain the mechanism of heat-releasing reaction of gas bubbles during electron irradiation. It is that the implanted gas in high pressure bubbles in aluminum is excited into plasma during electron irradiation. When the energy of plasma in the bubbles is accumulated to a certain degree, the plasma is extinguished suddenly. In this process, a lot of heat is released to melt the aluminum, thus leading the aluminum to recrystallize.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3