Orientation effect of asymmetric diatomic molecules in transport diffusion

Author:

Jiang Zhi-Liang ,Chen Pei-Rong ,Zhong Wei-Rong ,Ai Bao-Quan ,Shao Zhi-Gang , ,

Abstract

Non-equilibrium transport is an important research area in statistical physics. The influences of the structures of polyatomic molecules on their transport have attracted the attention of researchers. Up to now, most of researchers deemed that temperature gradient is the main factor for molecular orientation and neglected the effect of the chemical potential gradient on the molecular orientation. To make up the deficiency in the study of chemical potential gradients, we build a non-equilibrium system with both chemical potential gradient and temperature gradient, and study the transport diffusion behavior of asymmetric diatomic molecules by using molecular dynamics and Monte Carlo methods. It is found that the diatomic molecules implement the orientation effect during non-equilibrium transport. Under the chemical potential gradient, the molecular orientation effect leads to the fact that the large atom tends to be in the direction of low concentration particle bath, while the small atom tends to be in the direction of high concentration particle bath. The molecular orientation is opposite to the direction of the flow. Under the temperature gradient, the molecular orientation effect leads to the fact that the large atom tends to be in the direction of high temperature particle bath, while the small atom tends to be in the direction of low temperature particle bath. The molecular orientation is the same as the direction of the flow. The orientation direction caused by concentration gradients is opposite to that caused by temperature gradients and it appears as a competitive relationship. At the same time, the influence of the asymmetry of the molecule itself on the molecular orientation is also studied. The larger the asymmetry of the molecule itself (σB/σA), the more obvious the molecular orientation effect is. When σB/σA>1.6, the influence of the asymmetry of the molecule itself on the orientation effect is gradually saturated. When σB/σA=1, which is also for a symmetric molecule, even if neither the temperature gradient nor the chemical potential gradient is zero, no molecular orientation occurs. We explain the physical mechanism of orientation through the principle of minimum entropy production. This work is of theoretical significance for in depth understanding the relationship between mass transport and molecular structure under non-equilibrium conditions.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3