Influence of phase error of optical elements on optical path design of laser facilities

Author:

Xu Lin-Bo ,Lu Xing-Qiang ,Lei Ze-Min , ,

Abstract

Optical path design of high power laser facilities should consider several optimization measures such as those that are related to image transmission, ghost avoidance, and stray light management. According to the diffraction optical propagation theory, we study the the influences of wavefront characteristics of large aperture optical components on optimizing the design parameters of optical path in view of increasing the output load. The results show that the arrangement interval of the last stage optical drive can be very useful in improving the output load of the laser facilities if it is controlled to be over 6 m long. In general, a large aperture optical element with a phase error peak value of 0.34 can reduce the near field beam quality of a high-power laser by about 10% and give rise to a maximum decrease of about 21% when the phase error reaches 1.36. Superposition of multiple optical elements with different phase error distribution characteristics can reduce the negative effect of the mid frequency phase error. However, the nonlinear effect of large aperture optical components can aggravate the influence of the intermediate frequency phase error on the damage resistance capacity of the device. Under the premise that the damage threshold of the large caliber optical element is limited to 20 J/cm2, the using of a laser facility with a compact optical path, with an input laser energy density controlled to be below 16.8 J/cm2, will avoid damaging the optical components efficiently. A relatively flexible optical layout can further increase the average energy density of the final output laser and is very beneficial to the enhancing of the output load capacity of the laser facility.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference22 articles.

1. Zheng W G 2014 Load Capacity and Related Physical Problems of High Power Laser Devices (Beijing: Science Press) pp37-40 (in Chinese)[郑万国 2014 高功率激光装置的负载能力及其相关物理问题(北京:科学出版社) 第3740页]

2. Stolz C J 2007 Proc. SPIE 6834 683402

3. Andr M L 1999 Fusion Engineer. Design 44 43

4. Blackwell B D, Caneses J F, Samuell C M, Wash J, Howard J, Corr C 2012 Plasma Sources Sci. Technol. 21 055033

5. Sukharev S A 1999 Third International Conference on Solid State Lasers for Application to Inertial Confinement Fusion Monterey, CA, USA, June 7, 1998 pp12-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3