Influence of multipactor discharge on field-buildup process in radio-frequency plate cavity

Author:

Dong Ye ,Liu Qing-Xiang ,Pang Jian ,Zhou Hai-Jing ,Dong Zhi-Wei , , ,

Abstract

In this paper, the hybrid physical model is established based on the equivalent circuit for describing dynamic radio-frequency (RF) field buildup and the particle-in-cell (PIC) method for describing two-sided multipactor discharge in plate cavity. By using our built 1D3V-PIC code for multipactor discharge and fully equivalent circuit code for RF field buildup, the influence of multipactor discharge on the dynamic process of RF field buildup is numerically investigated and analyzed in detail under the condition of cavity with different Q-values. The numerical results could be concluded as follows. Under the condition of no multipactor discharge in dynamic process of RF field buildup, the higher the Q-value, the longer the buildup-time is. The input energy is equal to the sum of stored energy and consumed energy in cavity, the speed of energy storing is higher than the speed of energy consuming at the beginning stage of RF field buildup and then the speed of energy storing becomes lower than the speed of energy consuming. When the process of RF field buildup is finished, the average power of input is equal to the average power of consumed power in cavity. Under the condition of multipactor discharge loading in dynamic process of RF field buildup, the higher the Q-value, the later the start-time is and the longer the interaction time-interval of multipactor discharge is. The bigger the area of secondary electron emission, the higher the peak-value of secondary electron current is. The failure of RF field-buildup is caused by the continuous loading of multipactor discharge. The higher the Q-value or the bigger the area of secondary electron emission, the lower the probability of RF field buildup success is. The simulated results could partly provide a reference for engineering design.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3