Influence of asymmetrical angle on crystal lattice strain analysis using Voigt-function method

Author:

Zhu Jie ,Ji Meng ,Ma Shuang ,

Abstract

The Voigt function provides a rapid and easy method of explaining the breadths of diffraction profiles, and it defines two main broadening types: the domain size and strain component. The latter is caused by lattice imperfection (dislocation and different defects). Thus, diffraction can be used to measure crystal strain with very high precision and accuracy. However, each of all the crystals used in the present study has asymmetrical angle due to the processes of cutting grinding and polishing. This deviation angle is the angle between the considered lattice plane and crystal surface. The crystal with asymmetrical angle also satisfies Bragg's law but with different incident angle and reflected one. In the following, we investigate the crystal strain as a function of asymmetrical angle to evaluate the lattice distortion in detail. The single crystal silicon samples with different asymmetrical angles (in a range from 0.008 to 5.306) are prepared in this experiment. The lattice plane is (111). After grinding and polishing, the surface and subsurface damage are almost wiped off to remove internal stress which comes from cracks and grain refinement. Only broadening from lattice strain depends on the nature of imperfection, and the shape of crystallite can be left. It is convenient to acquire the full width at half maximum (FWHM) and integral breadth of diffraction curve by high resolution X-ray diffraction technique. Using the Voigt function method, diffraction line is characterized by all three parameters of the half-width integral breadth and form factor. The crystal lattice strains are calculated by analyzing the experimental line profile composed of Cauchy and Gaussian parts. Simulation of coherence diffraction of asymmetric crystal silicon is achieved by ray tracing code SHADOW. Both the theoretical calculation and experimental results show that if asymmetrical angle reaches 0.749, the half-width and integral breadth of diffraction curve change obviously compared with the situation where asymmetrical angle reaches 0.008. This is why the calculation error of crystal strain will be beyond 5% by the Voigt function method no matter whether we use theoretical value or experimental data. It is shown that the precise crystal cut is extremely important for device application. And this conclusion will also be helpful in other crystal studies by using X-ray diffraction parameters.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference25 articles.

1. Zaprazny Z, Korytar D, Siffalovic P, Jergel M, Demydenko M, Mikulik P, Dobrocka E, Ferrari C, Vagovic P, Mikloska M 2014 Advances in X-Ray/EUV Optics and Components IX 9207 920701Y

2. Guigay J P, Ferrero C 2016 Acta Cryst. A 72 489

3. Yang D R, Fan R X, Yao H N 1994 Mater. Sci. Eng. 12 33 (in Chinese) [杨德仁, 樊瑞新, 姚鸿年 1994 材料科学与工程 12 33]

4. Zhao B H, Chen D L 1991 J. Zhejiang Univ. -Sci. A 25 538 (in Chinese) [赵炳辉, 陈立登 1991 浙江大学学报 25 538]

5. Zhu N C, Li R S, Chen J Y, Xu S S 1990 Acta Phys. Sin. 39 770 (in Chinese) [朱南昌, 李润身, 陈京一, 许顺生 1990 物理学报 39 770]

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3