Effect of external field on the I-V characteristics through the molecular nano-junction

Author:

Niu Lu ,Wang Lu-Xia ,

Abstract

As a basic functional unit of molecular electronics, the structure of single molecule sandwiched between nano-electrodes has attracted a lot of interest in molecular science, in particular, its current-voltage (I-V) characteristic induced by an external field. Aiming at the molecular nano-junction which is composed of lead/molecule/lead, we use the method of extended master equation to compute the steady and transient current in the molecular nano-junction under the action of an externally applied electric field. The current can be adjusted by the external field, the relaxation in the molecule, the intra-molecular vibrational energy redistribution, etc. Owing to the strong electronic-vibrational coupling, the I-V curve has an inelastic characteristic in the molecular nano-junction and the stable current increases stepwise with the applied bias voltage increasing. The Franck-Condon blockage can be effectively removed by the external field. The molecular nano-junction being excited by different-width Gaussian pulses, the currents in the molecular nano-junction take different times to reach their steady state. The pulse width has a strong effect on the transient current enhancement. The transient current appears obviously for the 1 ps width pulse excitation. In this case the molecule is at a non-equilibrium state and the currents at both ends of the molecule are different. With the pulse width and the applied voltage increasing, the current through the molecular nano-junction tends to be balanced.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3