Quantum manipulation of electronic phase separation in complex oxides

Author:

Wang Wen-Bin ,Zhu Yin-Yan ,Yin Li-Feng ,Shen Jian , , ,

Abstract

Complex oxides system displays exotic properties such as high temperature superconductivity, colossal magnetoresistance and multiferroics. Owing to the strong correlation between lattice, spin, charge and orbital degrees of freedom, competing electronic states in complex oxides system often have close energy scales leading to rich phase diagrams and spatial coexistence of different electronic phases known as electronic phase separation (EPS). When the dimension of complex oxides system is reduced to the length scale of the correlation length of the EPS, one would expect fundamental changes of the correlated behavior. This offers a way to control the physical properties in the EPS system. In this paper, we review our recent works on electronic phase separation in complex oxide systems. We discovered a pronounced ferromagnetic edge state in manganite strips; by using lithographic techniques, we also fabricated antidot arrays in manganite, which show strongly enhanced metal-insulator transition temperature and reduced resistance. Moreover, we discovered a spatial confinement-induced transition from an EPS state featuring coexistence of ferromagnetic metallic and charge order insulating phases to a single ferromagnetic metallic state in manganite. In addition, by using unit cell by unit cell superlattice growth technique, we determined the role of chemical ordering of the dopant in manganite. We show that spatial distribution of the chemical dopants has strong influence on their EPS and physical properties. These works open a new way to manipulate EPS and thus the global physical properties of the complex oxides systems, which is potentially useful for oxides electronic and spintronic device applications.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3