Application of reaction diffusion model in Turing pattern and numerical simulation

Author:

Zhang Rong-Pei ,Wang Zhen ,Wang Yu ,Han Zi-Jian , ,

Abstract

Turing proposed a model for the development of patterns found in nature in 1952. Turing instability is known as diffusion-driven instability, which states that a stable spatially homogeneous equilibrium may lose its stability due to the unequal spatial diffusion coefficients. The Gierer-Mainhardt model is an activator and inhibitor system to model the generating mechanism of biological patterns. The reaction-diffusion system is often used to describe the pattern formation model arising in biology. In this paper, the mechanism of the pattern formation of the Gierer-Meinhardt model is deduced from the reactive diffusion model. It is explained that the steady equilibrium state of the nonlinear ordinary differential equation system will be unstable after adding of the diffusion term and produce the Turing pattern. The parameters of the Turing pattern are obtained by calculating the model. There are a variety of numerical methods including finite difference method and finite element method. Compared with the finite difference method and finite element method, which have low order precision, the spectral method can achieve the convergence of the exponential order with only a small number of nodes and the discretization of the suitable orthogonal polynomials. In the present work, an efficient high-precision numerical scheme is used in the numerical simulation of the reaction-diffusion equations. In spatial discretization, we construct Chebyshev differentiation matrices based on the Chebyshev points and use these matrices to differentiate the second derivative in the reaction-diffusion equation. After the spatial discretization, we obtain the nonlinear ordinary differential equations. Since the spectral differential matrix obtained by the spectral collocation method is full and cannot use the fast solution of algebraic linear equations, we choose the compact implicit integration factor method to solve the nonlinear ordinary differential equations. By introducing a compact representation for the spectral differential matrix, the compact implicit integration factor method uses matrix exponential operations sequentially in every spatial direction. As a result, exponential matrices which are calculated and stored have small sizes, as those in the one-dimensional problem. This method decouples the exact evaluation of the linear part from the implicit treatment of the nonlinear reaction terms. We only solve a local nonlinear system at each spatial grid point. This method combines with the advantages of the spectral method and the compact implicit integration factor method, i.e., high precision, good stability, and small storage and so on. Numerical simulations show that it can have a great influence on the generation of patterns that the system control parameters take different values under otherwise identical conditions. The numerical results verify the theoretical results.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference23 articles.

1. Turing A M 1952 Philos. Trans. R. Soc. Lond. B 2 37

2. Li X Z, Bai Z G, Li Y, Zhao K, He Y F 2013 Acta Phys. Sin. 62 220503 (in Chinese) [李新政, 白占国, 李燕, 赵昆, 贺亚峰 2013 物理学报 62 220503]

3. Zhang L, Liu S Y 2007 Appl. Math. Mec. 28 1102 (in Chinese) [张丽, 刘三阳 2007 应用数学和力学 28 1102]

4. Li B, Wang M X 2008 Appl. Math. Mec. 29 749 (in Chinese) [李波, 王明新 2008 应用数学和力学 29 749]

5. Hu W Y, Shao Y Z 2014 Acta Phys. Sin. 63 238202 (in Chinese) [胡文勇, 邵元智 2014 物理学报 63 238202]

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3